Postepy Hig Med Dosw (Online)
November 2013
Recently published data demonstrated that increased release, oligomerization and toxicity of α-synuclein (ASN) is a key molecular process in pathophysiology of neurodegenerative diseases classified as synucleinopathies (e.g. Parkinson disease or Alzheimer's disease).
View Article and Find Full Text PDFOur previous studies indicated that exogenous alpha-synuclein (ASN) activates neuronal nitric oxide (NO) synthase (nNOS) in rat brain slices. The present study, carried out on immortalized hippocampal neuronal cells (HT22), was designed to extend the previous results by showing the molecular pathway of NO-mediated cell death induced by exogenous ASN. Extracellular ASN (10 microM) was found to stimulate nitric oxide synthase (NOS) and increase caspase-3 activity in HT22 cells, leading to poly(ADP-ribose) polymerase (PARP-1) cleavage.
View Article and Find Full Text PDFThe biological roles of poly(ADP-ribose) polymers (PAR) and poly(ADP-ribosyl)ation of proteins in the central nervous system are diverse. The homeostasis of PAR orchestrated by poly(ADP-ribose) polymerase-1 (PARP-1) and poly(ADP-ribose) glycohydrolase (PARG) is crucial for cell physiology and pathology. Both enzymes are ubiquitously distributed in neurons and glia; however, they are segregated at the subcellular level.
View Article and Find Full Text PDF