During preimplantation mouse development stages, emerging pluripotent epiblast (Epi) and extraembryonic primitive endoderm (PrE) cells are first distributed in the blastocyst in a "salt-and-pepper" manner before they segregate into separate layers. As a result of segregation, PrE cells become localised on the surface of the inner cell mass (ICM), and the Epi is enclosed by the PrE on one side and by the trophectoderm on the other. During later development, a subpopulation of PrE cells migrates away from the ICM and forms the parietal endoderm (PE), while cells remaining in contact with the Epi form the visceral endoderm (VE).
View Article and Find Full Text PDFIt is now well-established that hematopoietic stem cells (HSCs) and progenitor cells originate from a specialized subset of endothelium, termed hemogenic endothelium (HE), via an endothelial-to-hematopoietic transition. However, the molecular mechanisms determining which endothelial progenitors possess this hemogenic potential are currently unknown. Here, we investigated the changes in hemogenic potential in endothelial progenitors at the early stages of embryonic development.
View Article and Find Full Text PDFUnderstanding the mechanisms underlying the first cell differentiation events in human preimplantation development is fundamental for defining the optimal conditions for IVF techniques and selecting the most viable embryos for further development. However, our comprehension of the very early events in development is still very limited. Moreover, our knowledge on early lineage specification comes primarily from studying the mouse model.
View Article and Find Full Text PDFDuring mouse pre-implantation development, extra-embryonic primitive endoderm (PrE) and pluripotent epiblast precursors are specified in the inner cell mass (ICM) of the early blastocyst in a 'salt and pepper' manner, and are subsequently sorted into two distinct layers. Positional cues provided by the blastocyst cavity are thought to be instrumental for cell sorting; however, the sequence of events and the mechanisms that control this segregation remain unknown. Here, we show that atypical protein kinase C (aPKC), a protein associated with apicobasal polarity, is specifically enriched in PrE precursors in the ICM prior to cell sorting and prior to overt signs of cell polarisation.
View Article and Find Full Text PDFThe separation of two populations of cells-primitive endoderm and epiblast-within the inner cell mass (ICM) of the mammalian blastocyst is a crucial event during preimplantation development. However, many aspects of this process are still not very well understood. Recently, the identification of platelet derived growth factor receptor alpha (Pdgfrα) as an early-expressed protein that is also a marker of the later primitive endoderm lineage, together with the availability of the Pdgfra(H2B-GFP) mouse strain (Hamilton et al.
View Article and Find Full Text PDFCell differentiation during pre-implantation mammalian development involves the formation of two extra-embryonic lineages: trophoblast and primitive endoderm (PrE). A subset of cells within the inner cell mass (ICM) of the blastocyst does not respond to differentiation signals and forms the pluripotent epiblast, which gives rise to all of the tissues in the adult body. How this group of cells is set aside remains unknown.
View Article and Find Full Text PDFThrough cell-based screening of our kinase-directed compound collection, we discovered that a subset of N-phenyl-4-(thiazol-5-yl)pyrimidin-2-amines were potent cytotoxic agents against cancer cell lines, suppressed mitotic histone H3 phosphorylation, and caused aberrant mitotic phenotypes. It was subsequently established that these compounds were in fact potent inhibitors of aurora A and B kinases. It was shown that potency and selectivity of aurora kinase inhibition correlated with the presence of a substituent at the aniline para-position in these compounds.
View Article and Find Full Text PDFGenesis of the trophectoderm and inner cell mass (ICM) lineages occurs in two stages. It is initiated via asymmetric divisions of eight- and 16-cell blastomeres that allocate cells to inner and outer positions, each with different developmental fates. Outside cells become committed to the trophectoderm at the blastocyst stage through Cdx2 activity, but here we show that Cdx2 can also act earlier to influence cell allocation.
View Article and Find Full Text PDFActivation of zygotic gene expression in the two-cell mouse embryo is associated with destruction of maternally inherited transcripts, an important process for embryogenesis about which little is understood. We asked whether the Argonaute (Ago)/RNA-induced silencing complex, providing the mRNA "slicer" activity in gene silencing, might contribute to this process. Here we show that Ago2, 3, and 4 transcripts are contributed to the embryo maternally.
View Article and Find Full Text PDFThe aim of this study was to investigate the fate of an additional female genome introduced to a dividing zygote. Maternal chromatin in the form of karyoplasts containing a metaphase II spindle were fused to zygotes blocked in anaphase or telophase of the first cleavage. Permanent preparations made 20-40 min after fusion at anaphase revealed that the donor maternal chromosomes had entered anaphase or telophase in 16 out of 18 cases.
View Article and Find Full Text PDFWe have investigated the possibility that mitotic nuclei originating from preimplantation stage embryos and placed in the oocyte cytoplasm can undergo remodelling that allows them to undergo meiosis in the mouse. To address this question, we have used enucleated germinal vesicle (GV) ooplasts as recipients and blastomeres from the 2-, 4- or 8-cell stage as nuclear donors. We employed two methods to obtain ooplasts from GV oocytes: cutting and enucleation.
View Article and Find Full Text PDFThe conservation of early cleavage patterns in organisms as diverse as echinoderms and mammals suggests that even in highly regulative embryos such as the mouse, division patterns might be important for development. Indeed, the first cleavage divides the fertilized mouse egg into two cells: one cell that contributes predominantly to the embryonic part of the blastocyst, and one that contributes to the abembryonic part. Here we show, by removing, transplanting or duplicating the animal or vegetal poles of the mouse egg, that a spatial cue at the animal pole orients the plane of this initial division.
View Article and Find Full Text PDFConditions for the electroporation of mouse oocytes and preimplantation embryos have been optimised by following the incorporation of rhodamine labeled dextran. This procedure includes a step to weaken but not remove the zona pellucida that helps achieve good survival. This approach has been applied to introduce double-stranded RNA for c-mos into oocytes and green fluorescent protein (GFP) into transgenic GFP-expressing embryos at the 1- and 4-cell stages.
View Article and Find Full Text PDF