Publications by authors named "Joanna Atkin"

Surface functionalization of low-dimensional nanomaterials offers a means to tailor their optoelectronic and chemical characteristics. However, functionalization reactions are sensitive to the inherent surface features of nanomaterials, such as defects, grain boundaries, and edges. Conventional optical characterization methods, such as Raman spectroscopy, have limited sensitivity and spatial resolution and, therefore, struggle to visualize reaction sites and chemical species.

View Article and Find Full Text PDF
Article Synopsis
  • Aryl diazonium electrografting allows researchers to attach functional molecules to surfaces, creating stable carbon-surface bonds, but it can form thick, disordered films that hinder electrochemical performance.
  • The study focused on how the thickness and composition of these films impact both n-type and p-type silicon electrodes, particularly in photoelectrochemical applications.
  • Results showed that thicker diazonium films reduced electrochemical reversibility, which improved when ferrocene was added, highlighting differences in performance between p-type and n-type electrodes.
View Article and Find Full Text PDF

Covalent bonding interactions determine the energy-momentum (-) dispersion (band structure) of solid-state materials. Here, we show that noncovalent interactions can modulate the - dispersion near the Fermi level of a low-dimensional nanoscale conductor. We demonstrate that low energy band gaps may be opened in metallic carbon nanotubes through polymer wrapping of the nanotube surface at fixed helical periodicity.

View Article and Find Full Text PDF

Graphene oxide (GO) has attracted substantial interest for its tunable properties and as a possible intermediate for the bulk manufacture of graphene. GO and its reduced derivatives display electronic and optical properties that depend strongly on their chemical structure, and with proper functionalization, GO can have a desirable bandgap for semiconductor applications. However, its chemical activity leads to a series of unclear chemical changes under ambient conditions, resulting in changes in color and solubility upon exposure to light.

View Article and Find Full Text PDF

Humidity plays an important role in the surface removal and concentrations of indoor pollutants such as ozone; however, the indoor surface dynamics and chemistry of organic peroxides is largely unknown. Organic hydroperoxides (ROOHs) are known to participate in the multiphase chemistry of outdoor aerosols and clouds, suggesting that reactive uptake in condensed grime on indoor surfaces is plausible, particularly in humid homes. Here, the effect of relative humidity (RH) on the deposition velocity () and reaction probability () of a model ROOH to naturally soiled indoor glass surfaces was investigated; specifically, by using authentic isoprene hydroxy hydroperoxide (1,2-ISOPOOH) as the model compound.

View Article and Find Full Text PDF

Stability and current-voltage hysteresis stand as major obstacles to the commercialization of metal halide perovskites. Both phenomena have been associated with ion migration, with anecdotal evidence that stable devices yield low hysteresis. However, the underlying mechanisms of the complex stability-hysteresis link remain elusive.

View Article and Find Full Text PDF

Photoelectrochemical (PEC) water splitting to produce hydrogen fuel was first reported 50 years ago, yet artificial photosynthesis has not become a widespread technology. Although planar Si solar cells have become a ubiquitous electrical energy source economically competitive with fossil fuels, analogous PEC devices have not been realized, and standard Si p-type/n-type (p-n) junctions cannot be used for water splitting because the bandgap precludes the generation of the needed photovoltage. An alternative paradigm, the particle suspension reactor (PSR), forgoes the rigid design in favour of individual PEC particles suspended in solution, a potentially low-cost option compared with planar systems.

View Article and Find Full Text PDF

A sonochemical-based hydrosilylation method was employed to covalently attach a rhenium tricarbonyl phenanthroline complex to silicon(111). -Re(5-(-Styrene)-phen)(CO)Cl (5-(-styrene)-phen = 5-(4-vinylphenyl)-1,10-phenanthroline) was reacted with hydrogen-terminated silicon(111) in an ultrasonic bath to generate a hybrid photoelectrode. Subsequent reaction with 1-hexene enabled functionalization of remaining atop Si sites.

View Article and Find Full Text PDF

Protein-based pharmaceuticals are increasingly important, but their inherent instability necessitates a "cold chain" requiring costly refrigeration during production, shipment, and storage. Drying can overcome this problem, but most proteins need the addition of stabilizers, and some cannot be successfully formulated. Thus, there is a need for new, more effective protective molecules.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs), with their water- and heat-resistant properties, have been widely used in industrial and consumer products, including floor waxes. Adverse health effects are associated with PFAS exposures (e.g.

View Article and Find Full Text PDF

Water is essential to protein structure and stability, yet our understanding of how water shapes proteins is far from thorough. Our incomplete knowledge of protein-water interactions is due in part to a long-standing technological inability to assess experimentally how water removal impacts local protein structure. It is now possible to obtain residue-level information on dehydrated protein structures via liquid-observed vapor exchange (LOVE) NMR, a solution NMR technique that quantifies the extent of hydrogen-deuterium exchange between unprotected amide protons of a dehydrated protein and DO vapor.

View Article and Find Full Text PDF

Electrical scanning probe microscopies (SPM) use ultrasharp metallic tips to obtain nanometer spatial resolution and are a key tool for characterizing nanoscale semiconducting materials and systems. However, these tips are not passive probes; their high work functions can induce local band bending whose effects depend sensitively on the local geometry and material properties and thus are inherently difficult to quantify. We use sequential finite element simulations to first explore the magnitude and spatial distribution of charge reorganization due to tip-induced band bending (TIBB) for planar and nanostructured geometries.

View Article and Find Full Text PDF

Real materials are disordered. This disorder influences the properties of these materials and the chemical processes that occur at their interfaces. Gaining a molecular-level understanding of the underlying physical manifestations caused by disordered materials is crucial to unraveling and ultimately controlling the efficiency and performance of these materials in a range of energy-related devices.

View Article and Find Full Text PDF

Tip-enhanced Raman spectroscopy (TERS) is a promising technique for structural studies of biological systems and biomolecules, owing to its ability to provide a chemical fingerprint with sub-diffraction-limit spatial resolution. This application of TERS has thus far been limited, due to difficulties in generating high field enhancements while maintaining biocompatibility. The high sensitivity achievable through TERS arises from the excitation of a localized surface plasmon resonance in a noble metal atomic force microscope (AFM) tip, which in combination with a metallic surface can produce huge enhancements in the local optical field.

View Article and Find Full Text PDF

Water-soluble organic gas (WSOG) concentrations are elevated in homes. However, WSOG sources, sinks, and concentration dynamics are poorly understood. We observed substantial variations in 23 residential indoor WSOG concentrations measured in real time in a North Carolina, U.

View Article and Find Full Text PDF

Nanowires (NWs) with axial p-i-n junctions have been widely explored as microscopic diodes for optoelectronic and solar energy applications, and their performance is strongly influenced by charge recombination at the surface. We delineate how the photovoltaic performance of these diodes is dictated not only by the surface but also by the complex and seemingly counterintuitive interplay of diode geometry, that is, radius ( R) and intrinsic length ( L), with the surface recombination velocity ( S). An analytical model to describe these relationships is developed and compared to finite-element simulations, which verify the accuracy and limitations of the model.

View Article and Find Full Text PDF

Intra- and intermolecular ordering greatly impact the electronic and optoelectronic properties of semiconducting polymers. Despite much prior efforts regarding molecular packing, the interrelationship between ordering of alkyl sidechains and conjugated backbones has not been fully detailed. We report here the discovery of a highly ordered alkyl sidechain phase in six representative semiconducting polymers, determined from distinct spectroscopic and diffraction signatures.

View Article and Find Full Text PDF

We report the use of infrared (IR) scattering-type scanning near-field optical microscopy (s-SNOM) as a nondestructive method to map free-carriers in axially modulation-doped silicon nanowires (SiNWs) with nanoscale spatial resolution. Using this technique, we can detect local changes in the electrically active doping concentration based on the infrared free-carrier response in SiNWs grown using the vapor-liquid-solid (VLS) method. We demonstrate that IR s-SNOM is sensitive to both p-type and n-type free-carriers for carrier densities above ∼1 × 10 cm.

View Article and Find Full Text PDF

The bilayer grain boundaries (GBs) in chemical-vapor-deposition-grown large-area graphene are identified using multispectral tip-enhanced Raman imaging with 18 nm spatial resolution. The misorientation angle of the bilayer GBs is determined from a quantitative analysis of the phonon-scattering properties associated with the modified electronic structure.

View Article and Find Full Text PDF

Many phase transitions in correlated matter exhibit spatial inhomogeneities with expected yet unexplored effects on the associated ultrafast dynamics. Here we demonstrate the combination of ultrafast nondegenerate pump-probe spectroscopy with far from equilibrium excitation, and scattering scanning near-field optical microscopy (s-SNOM) for ultrafast nanoimaging. In a femtosecond near-field near-IR (NIR) pump and mid-IR (MIR) probe study, we investigate the photoinduced insulator-to-metal (IMT) transition in nominally homogeneous VO2 microcrystals.

View Article and Find Full Text PDF

Femtosecond nonlinear optical imaging with nanoscale spatial resolution would provide access to coupled degrees of freedom and ultrafast response functions on the characteristic length scales of electronic and vibrational excitations. Although near-field microscopy provides the desired spatial resolution, the design of a broadband high-contrast nanoprobe for ultrafast temporal resolution is challenging due to the inherently weak nonlinear optical signals generated in subwavelength volumes. Here, we demonstrate broadband four-wave mixing with enhanced nonlinear frequency conversion efficiency at the apex of a nanometre conical tip.

View Article and Find Full Text PDF

Structure, dynamics, and coupling involving single-molecules determine function in catalytic, electronic or biological systems. While vibrational spectroscopy provides insight into molecular structure, rapid fluctuations blur the molecular trajectory even in single-molecule spectroscopy, analogous to spatial averaging in measuring large ensembles. To gain insight into intramolecular coupling, substrate coupling, and dynamic processes, we use tip-enhanced Raman spectroscopy (TERS) at variable and cryogenic temperatures, to slow and control the motion of a single molecule.

View Article and Find Full Text PDF

Vibrational spectroscopy can provide information about structure, coupling, and dynamics underlying the properties of complex molecular systems. While measurements of spectral line broadening can probe local chemical environments, the spatial averaging in conventional spectroscopies limits insight into underlying heterogeneity, in particular in disordered molecular solids. Here, using femtosecond infrared scattering scanning near-field optical microscopy (IR s-SNOM), we resolve in vibrational free-induction decay (FID) measurements a high degree of spatial heterogeneity in polytetrafluoroethylene (PTFE) as a dense molecular model system.

View Article and Find Full Text PDF

The insulator-metal transition (IMT) of vanadium dioxide (VO2) has remained a long-standing challenge in correlated electron physics since its discovery five decades ago. Most interpretations of experimental observations have implicitly assumed a homogeneous material response. Here we reveal inhomogeneous behaviour of even individual VO2 microcrystals using pump-probe microscopy and nanoimaging.

View Article and Find Full Text PDF

We study the micro-Raman spectra of colloidal silicon nanocrystals as a function of size, excitation wavelength, and excitation intensity. We find that the longitudinal optical (LO) phonon spectrum is asymmetrically broadened toward the low energy side and exhibits a dip or antiresonance on the high-energy side, both characteristics of a Fano line shape. The broadening depends on both nanocrystal size and Raman excitation wavelength.

View Article and Find Full Text PDF