This study analyzed the possibility of using plant-originated waste materials (black and green tea dust) as functional polyethylene fillers. The dependence between the size of the filler particles and their antioxidant potential is discussed. Six fractions were selected: below 50 µm, 50-100 µm, 100-200 µm, 200-400 µm, 400-630 µm and 630-800 µm.
View Article and Find Full Text PDFThe growing requirements regarding the safety of using polymers and their composites are related to the emergence of more effective, sustainable, and hazardous-limited fire retardants (FRs). Significant amounts of FRs are usually required to effectively affect a polymer's burning behavior, while the knowledge of their recycling potential is still insufficient. At the same time, concerns are related not only to the reduced effectiveness of flame retardancy but also, above all, to the potential deterioration of mechanical properties caused by the degradation of temperature-affected additives under processing conditions.
View Article and Find Full Text PDFBeer is among the most popular beverages in the world, with the production distributed uniformly between the biggest continents, so the utilization of brewing by-products is essential on a global scale. Among their potential recipients, the plastics industry offers extensive range of potential products. Herein, the presented study investigated the application of currently underutilized solid brewing by-products (brewers' spent grain, spent hops, spent yeast) as fillers for highly-filled poly(ε-caprolactone)-based composites, providing the first direct connection between spent hops or spent yeast and the polymer composites.
View Article and Find Full Text PDFIn this paper, the possibility of obtaining uniaxially rotomolded composite parts was discussed. The used matrix was bio-based low-density polyethylene (bioLDPE) filled with black tea waste (BTW) to prevent the thermooxidation of samples during processing. In rotational molding technology, the material is held at an elevated temperature in a molten state for a relatively long time, which can result in polymer oxidation.
View Article and Find Full Text PDFThis article presents the results of research on obtaining new polyurethane (PUR) foams modified with thermally expanded vermiculite. The filler was added in amount of 3 wt.% up to 15 wt.
View Article and Find Full Text PDFDue to the massive plastic pollution, development of sustainable and biodegradable polymer materials is crucial to reduce environmental burdens and support climate neutrality. Application of lignocellulosic wastes as fillers for polymer composites was broadly reported, but analysis of biodegradation behavior of resulting biocomposites was rarely examined. Herein, sustainable Mater-Bi-based biocomposites filled with thermomechanically- and chemically-modified brewers' spent grain (BSG) were prepared and subjected to 12-week soil burial test simulating their biodegradation in natural environment.
View Article and Find Full Text PDFRotational molding is a technology in which polymeric thin-walled products can be made. The newest descriptions of this technology concern the possibility of obtaining polymer composite materials. There are two main methods of incorporating fillers into a polymer matrix.
View Article and Find Full Text PDFThe presented research was focused on the development of a new method of sandwich structure manufacturing involving FDM-printing (fused deposition modeling) techniques and compression molding. The presented concept allows for the preparation of thermoplastic-based composites with enhanced mechanical properties. The sample preparation process consists of 3D printing the sandwich's core structure using the FDM method.
View Article and Find Full Text PDFThe development of new polymer compositions characterized by a reduced environmental impact while lowering the price for applications in large-scale production requires the search for solutions based on the reduction in the polymer content in composites' structure, as well as the use of fillers from sustainable sources. The study aimed to comprehensively evaluate introducing low-cost inorganic fillers, such as copper slag (CS), basalt powder (BP), and expanded vermiculite (VM), into the flame-retarded ammonium polyphosphate polyethylene composition (PE/APP). The addition of fillers (5-20 wt%) increased the stiffness and hardness of PE/APP, both at room and at elevated temperatures, which may increase the applicability range of the flame retardant polyethylene.
View Article and Find Full Text PDF