Publications by authors named "Joanna A Phipps"

Local blood flow control within the central nervous system (CNS) is critical to proper function and is dependent on coordination between neurons, glia, and blood vessels. Macroglia, such as astrocytes and Müller cells, contribute to this neurovascular unit within the brain and retina, respectively. This study explored the role of microglia, the innate immune cell of the CNS, in retinal vasoregulation, and highlights changes during early diabetes.

View Article and Find Full Text PDF

The retina is known to have a local renin-angiotensin system (RAS) and dysfunction in the RAS is often associated with diseases of the retinal vasculature that cause irreversible vision loss. Regulation of the retinal vasculature to meet the metabolic needs of the tissues occurs through a mechanism called neurovascular coupling, which is critical for maintaining homeostatic function and support for neurons. Neurovascular coupling is the process by which support cells, including glia, regulate blood vessel calibre and blood flow in response to neural activity.

View Article and Find Full Text PDF

Purpose: Vision loss caused by photoreceptor death represents one of the first symptoms in neuronal ceroid lipofuscinosis, a condition characterized by accumulation of intracellular waste. Cln6nclf mice have a naturally occurring mutation in ceroid-lipofuscinosis neuronal (CLN) protein 6 and are a model of this disorder. In order to identify the effect intracellular waste (lipofuscin) accumulation plays in driving retinal degeneration, the time course of degeneration was carefully characterized functionally using the electroretinogram and structurally using histology.

View Article and Find Full Text PDF

Microglia are the resident immune cells of the CNS, and their response to infection, injury and disease is well documented. More recently, microglia have been shown to play a role in normal CNS development, with the fractalkine-Cx3cr1 signaling pathway of particular importance. This work describes the interaction between the light-sensitive photoreceptors and microglia during eye opening, a time of postnatal photoreceptor maturation.

View Article and Find Full Text PDF

The presence of drusen in the posterior eye is a hallmark feature of the early stages of age-related macular degeneration and their size is an indicator of risk of progression to vision-threatening forms of the disease. Since the initial observations that laser treatment can resolve drusen, there has been great interest in whether laser treatment can be used to reduce the progression of age-related macular degeneration. In this article, we review the development of lasers for the treatment of those with age-related macular degeneration.

View Article and Find Full Text PDF

Purpose: This study explored whether the proangiogenic factor Angiotensin II (AngII) had a direct effect on the activation state of microglia via the Angiotensin type 1 receptor (AT1-R).

Methods: Microglial dynamic activity was investigated in live retinal flatmounts from adult Cx3Cr1+/GFP mice under control, AngII (5 μM) or AngII (5 μM) + candesartan (0.227 μM) conditions.

View Article and Find Full Text PDF

Age-related macular degeneration (AMD) is a leading cause of irreversible, severe vision loss in Western countries. Recently, we identified a novel pathway involving P2X7 receptor scavenger function expressed on ocular immune cells as a risk factor for advanced AMD. In this study, we investigate the effect of loss of P2X7 receptor function on retinal structure and function during aging.

View Article and Find Full Text PDF

Purines, when present in the extracellular space, can mediate fast neurotransmission in the retina and central nervous system. Over the last decade there has been emerging evidence for the expression of P2X and P2Y receptors in a range of retinal neuronal subtypes. These results have highlighted important roles for purines in modulating specific retinal circuits, including the rod pathway and amacrine cell circuits.

View Article and Find Full Text PDF

Purpose: The chemokine Ccl2, or monocyte chemoattractant protein-1 (MCP-1), has previously been identified as playing a potential role in many ocular diseases; however, its role in mice is less clear. We sought to correlate changes in retinal pigment epithelium (RPE) and retinal morphology with changes in function in aging Ccl2(-/-) mice.

Methods: Ccl2(-/-) mice on a C57BL6J background were genotyped for Crb1(rd8/rd8) and were free of this mutation.

View Article and Find Full Text PDF

Over the recent years, there have been tremendous advances in our understanding of the genetic and environmental factors associated with the development of age-related macular degeneration (AMD). Examination of retinal changes in various animals has aided our understanding of the pathogenesis of the disease. Notably, mouse strains, carrying genetic anomalies similar to those affecting humans, have provided a foundation for understanding how various genetic risk factors affect retinal integrity.

View Article and Find Full Text PDF

Many common causes of blindness involve the death of retinal photoreceptors, followed by progressive inner retinal cell remodeling. For an inducible model of retinal degeneration to be useful, it must recapitulate these changes. Intravitreal administration of adenosine triphosphate (ATP) has recently been found to induce acute photoreceptor death.

View Article and Find Full Text PDF

Purpose: The chemokine, Ccl2, and the fractalkine receptor, Cx3cr1, have both been implicated in the pathogenesis of age related macular degeneration (AMD), with mice lacking both genes exhibiting features of AMD by 3 months of age. However, recent reports indicate that this ascribed phenotype is due to the presence of a retinal degeneration mutation (crb1(rd8/rd8), rd8) on the background strain. Our aim was to characterize the retinal effects of lack of Ccl2 and Cx3cr1 (Ccl2(-/-)/Cx3cr1(EGFP/EGFP), CDKO-mice), in mice without the rd8 mutation.

View Article and Find Full Text PDF

Diabetic retinopathy is a common complication of both type 1 and type 2 diabetes and is the leading cause of blindness in people of working age. Current treatment strategies are mostly limited to laser photocoagulation, which restricts proliferative retinopathic changes but also causes irreversible damage to the retina. This review examines two important pathways involved in regulating vascular function and their role in the development of diabetic retinopathy.

View Article and Find Full Text PDF

Purpose: Neuronal and glial alterations precede the overt vascular change that characterizes diabetic retinopathy. Because retinal astrocytes modulate neuronal and vascular function, this study investigated the time course of astrocyte, Müller cell, and neuronal change during diabetes to determine whether astrocytes may play an early role in diabetic retinopathy.

Methods: Sprague-Dawley rats were rendered diabetic via streptozotocin and neuronal and glial changes were assessed after 2-10 weeks.

View Article and Find Full Text PDF

Renin-Angiotensin System is classically recognized for its role in the control of systemic blood pressure. However, the retina is recognized to have all the components necessary for angiotensin II formation, suggestive of a role for Angiotensin II in the retina that is independent of the systemic circulation. The most well described effects of Angiotensin II are on the retinal vasculature, with roles in vasoconstriction and angiogenesis.

View Article and Find Full Text PDF

Diabetic retinopathy is the most common microvascular complication caused by diabetes mellitus and is a leading cause of vision loss among working-age adults in developed countries. Understanding the effects of diabetes on the retinal proteome may provide insights into factors and mechanisms responsible for this disease. We have performed a comprehensive proteomic analysis and comparison of retina from C57BL/6 mice with 2 months of streptozotocin-induced diabetes and age-matched nondiabetic control mice.

View Article and Find Full Text PDF

Background: Seizure-related gene 6 (Sez-6) is expressed in neurons of the mouse brain, retina and spinal cord. In the cortex, Sez-6 plays a role in specifying dendritic branching patterns and excitatory synapse numbers during development.

Methodology/principal Findings: The distribution pattern of Sez-6 in the retina was studied using a polyclonal antibody that detects the multiple isoforms of Sez-6.

View Article and Find Full Text PDF

Hypertension is a leading risk factor for the development and progression of diabetic retinopathy and contributes to a variety of other retinal diseases in the absence of diabetes mellitus. Inhibition of the renin-angiotensin system has been shown to provide beneficial effects against diabetic retinopathy, both in the absence and presence of hypertension, suggesting that angiotensin II (Ang II) and the Ang II type 1 receptor may contribute to retinal vascular dysfunction. We investigated the effects of the Ang II type 1 receptor antagonist candesartan on retinal vascular permeability (RVP) in normotensive rats with streptozotocin-induced diabetes mellitus and in rats with Ang II-induced hypertension.

View Article and Find Full Text PDF

Diabetes is known to cause significant alterations in the retinal vasculature. Indeed, diabetic retinopathy is the leading cause of blindness in those of working age. Considerable evidence is emerging that indicates that retinal neurons are also altered during diabetes.

View Article and Find Full Text PDF

Purpose: To determine whether diabetes leads to retinal neuronal dysfunction in hypertensive transgenic (mRen-2)27 rats (Ren-2), and whether the effect can be prevented by treatment of hypertension with either the angiotensin-1 receptor blocker (AT1-RB) valsartan or the beta1-adrenergic receptor antagonist atenolol.

Methods: Six-week-old Ren-2 rats were made diabetic (streptozotocin 55 mg/kg; n = 34) or remained nondiabetic (0.1 M citrate buffer; n = 43) and studied for 20 weeks.

View Article and Find Full Text PDF

Purpose: To examine photoreceptor function in diabetes in detail by evaluating photoreceptor light activation, deactivation of the photoresponse, and recovery of the photoreceptor after bleaching (dark adaptation) in rats made diabetic with streptozotocin (STZ).

Methods: Animals were assigned to treated and control groups. Light activation in rod photoreceptors was established using a paired-flash electroretinogram (ERG) protocol, and the leading edge of the a-wave was modeled with the mechanisms mediating phototransduction.

View Article and Find Full Text PDF

Diabetic retinopathy is the leading cause of blindness in those of working age. It is well known that the retinal vasculature is altered during diabetes. More recently, it has emerged that neuronal and glial dysfunction occurs in those with diabetes.

View Article and Find Full Text PDF

Purpose: To investigate the onset of retinal neural dysfunction in the streptozotocin (STZ)-induced diatebic rat.

Methods: A cohort of 20 Sprague-Dawley rats were randomly assigned to treatment (STZ 50 mg/kg, n = 10) and control (citrate buffer, n = 10) groups and observed for 12 weeks. Diabetes was confirmed by blood glucose (>15 mmol/L) and HBA(1c) (>7.

View Article and Find Full Text PDF

Purpose: To compare static and flicker perimetry outcomes in patients with early age-related macular degeneration (AMD).

Methods: Perimetry was performed in the central visual field of one eye of each of 25 patients with good visual acuity (> 6/12) and early AMD using static and flickering targets. These results were compared with data obtained from a single eye of 34 age-matched control subjects, 33 of whom were retested at 1 to 3 months after their initial visits.

View Article and Find Full Text PDF

Purpose: To evaluate cone visual function of subjects with age-related maculopathy (ARM).

Methods: Cone thresholds in 16 patients with ARM and 14 age-matched control subjects were compared. All subjects had visual acuity of 6/12 or better in the studied eye.

View Article and Find Full Text PDF