Background: Automatic segmentation of 3D objects in computed tomography (CT) is challenging. Current methods, based mainly on artificial intelligence (AI) and end-to-end deep learning (DL) networks, are weak in garnering high-level anatomic information, which leads to compromised efficiency and robustness. This can be overcome by incorporating natural intelligence (NI) into AI methods via computational models of human anatomic knowledge.
View Article and Find Full Text PDF