Publications by authors named "Joann Sanders-Loehr"

The diiron ferredoxins have a common diamond-core structure with two bridging sulfides, but differ in the nature of their terminal ligands: either four cysteine thiolates in the Fe(2)S(2) ferredoxins or two cysteine thiolates and two histidine imidazoles in the Rieske ferredoxins. Contributions of the bridging (b) and terminal (t) ligands to the resonance Raman spectra of the Fe(2)S(2) ferredoxins have been distinguished previously by isotopic substitution of the bridging sulfides. We now find that uniform (15)N-labeling of Anabaena Fe(2)S(2) ferredoxin results in shifts of -1 cm(-1) in the Fe-S(t) stretching modes at 282, 340, and 357 cm(-1).

View Article and Find Full Text PDF

The double mutant H117G/N42C azurin exhibits tetragonal type 2 copper site characteristics with Cys(42) as one of the copper ligands as concluded from spectroscopic evidence (UV-visible, EPR, and resonance Raman). Analysis of the kinetics of copper uptake by the apoprotein by means of stopped flow spectroscopy suggests that the solvent-exposed Cys(42) assists in binding the metal ion and carrying it over to the active site where it becomes coordinated by, among others, a second cysteine, Cys(112). A structure is proposed in which the loop from residue 36 to 47 has rearranged to form a tetragonal type 2 copper site with Cys(42) as one of the ligands.

View Article and Find Full Text PDF

This study presents the first detailed examination by resonance Raman (RR) spectroscopy of the rates of solvent exchange for the C5 and C3 positions of the TPQ cofactor in several wild-type copper-containing amine oxidases and mutants of the amine oxidase from Hansenula polymorpha (HPAO). On the basis of crystal structure analysis and differing rates of C5 [double bond] O and C3 [bond] H exchange within the enzyme systems, but equally rapid rates of C5 [double bond] O and C3 [bond] H exchange in a TPQ model compound, it is proposed that these data can be used to determine the TPQ cofactor orientation within the active site of the resting enzyme. A rapid rate of C5 [double bond] O exchange (t(1/2) < 30 min) and a slow (t(1/2) = 6 h) to nonexistent rate of C3 [bond] H exchange was observed for wild-type HPAO, the amine oxidase from Arthrobacter globiformis, pea seedling amine oxidase at pH 7.

View Article and Find Full Text PDF