Publications by authors named "Joann C Williams"

A biohybrid model system is described that interfaces synthetic Mn-oxides with bacterial reaction centers to gain knowledge concerning redox reactions by metal clusters in proteins, in particular the MnCaO cluster of photosystem II. The ability of Mn-oxides to bind to modified bacterial reaction centers and transfer an electron to the light-induced oxidized bacteriochlorophyll dimer, P, was characterized using optical spectroscopy. The environment of P was altered to obtain a high P/P midpoint potential.

View Article and Find Full Text PDF

Low-temperature persistent and transient hole-burning (HB) spectra are presented for the triple hydrogen-bonded L131LH + M160LH + M197FH mutant of These spectra expose the heterogeneous nature of the P-, B-, and H-bands, consistent with a distribution of electron transfer (ET) times and excitation energy transfer (EET) rates. Transient PQ holes are observed for fast (tens of picoseconds or faster) ET times and reveal strong coupling to phonons and marker mode(s), while the persistent holes are bleached in a fraction of reaction centers with long-lived excited states characterized by much weaker electron-phonon coupling. Exposed differences in electron-phonon coupling strength, as well as a different coupling to the marker mode(s), appear to affect the ET times.

View Article and Find Full Text PDF

Energetics, protein dynamics, and electronic coupling are the key factors in controlling both electron and energy transfer in photosynthetic bacterial reaction centers (RCs). Here, we examine the rates and mechanistic pathways of the PH radical-pair charge recombination, triplet state formation, and subsequent triplet energy transfer from the triplet state of the bacteriochlorophyll dimer (P) to the carotenoid in a series of mutant RCs (L131LH + M160LH (D1), L131LH + M197FH (D2), and L131LH + M160LH + M197FH (T1)) of Rhodobacter sphaeroides. In these mutants, the electronic structure of P is perturbed and the P/P midpoint potential is systematically increased due to addition of hydrogen bonds between P and the introduced residues.

View Article and Find Full Text PDF

The ability of an artificial four-helix bundle Mn-protein, P1, to bind and transfer an electron to photosynthetic reaction centers from the purple bacterium Rhodobacter sphaeroides was characterized using optical spectroscopy. Upon illumination of reaction centers, an electron is transferred from P, the bacteriochlorophyll dimer, to Q, the primary electron acceptor. The P1 Mn-protein can bind to the reaction center and reduce the oxidized bacteriochlorophyll dimer, P, with a dissociation constant of 1.

View Article and Find Full Text PDF

To better understand metalloproteins with Mn-clusters, we have designed artificial four-helix bundles to have one, two, or three dinuclear metal centers able to bind Mn(II). Circular dichroism measurements showed that the Mn-proteins have substantial α-helix content, and analysis of electron paramagnetic resonance spectra is consistent with the designed number of bound Mn-clusters. The Mn-proteins were shown to catalyze the conversion of hydrogen peroxide into molecular oxygen.

View Article and Find Full Text PDF

In purple bacterial reaction centers, triplet excitation energy transfer occurs from the primary donor P, a bacteriochlorophyll dimer, to a neighboring carotenoid to prevent photodamage from the generation of reactive oxygen species. The B bacteriochlorophyll molecule that lies between P and the carotenoid on the inactive electron transfer branch is involved in triplet energy transfer between P and the carotenoid. To expand the high-resolution spectral and kinetic information available for describing the mechanism, we investigated the triplet excited state formation and energy transfer pathways in the reaction center of Rhodobacter sphaeroides using pump-probe transient absorption spectroscopy over a broad spectral region on the nanosecond to microsecond time scale at both room temperature and at 77 K.

View Article and Find Full Text PDF

A compelling target for the design of electron transfer proteins with novel cofactors is to create a model for the oxygen-evolving complex, a Mn4Ca cluster, of photosystem II. A mononuclear Mn cofactor can be added to the bacterial reaction center, but the addition of multiple metal centers is constrained by the native protein architecture. Alternatively, metal centers can be incorporated into artificial proteins.

View Article and Find Full Text PDF

The design of binding sites for divalent metals in artificial proteins is a productive platform for examining the characteristics of metal-ligand interactions. In this report, we investigate the spectroscopic properties of small peptides and four-helix bundles that bind Cu(II). Three small peptides, consisting of 15 amino acid residues, were designed to have two arms, each containing a metal-binding site comprised of different combinations of imidazole and carboxylate side chains.

View Article and Find Full Text PDF

Incorporation of membrane proteins into nanodevices to mediate recognition and transport in a collective and scalable fashion remains a challenging problem. We demonstrate how nanoscale photovoltaics could be designed using robust synthetic nanomembranes with incorporated photosynthetic reaction centers (RCs). Specifically, RCs from Rhodobacter sphaeroides are reconstituted spontaneously into rationally designed polybutadiene membranes to form hierarchically organized proteopolymer membrane arrays via a charge-interaction-directed reconstitution mechanism.

View Article and Find Full Text PDF

One of the outstanding questions concerning the early Earth is how ancient phototrophs made the evolutionary transition from anoxygenic to oxygenic photosynthesis, which resulted in a substantial increase in the amount of oxygen in the atmosphere. We have previously demonstrated that reaction centers from anoxygenic photosynthetic bacteria can be modified to bind a redox-active Mn cofactor, thus gaining a key functional feature of photosystem II, which contains the site for water oxidation in cyanobacteria, algae, and plants [Thielges M, et al. (2005) Biochemistry 44:7389-7394].

View Article and Find Full Text PDF

Carotenoid excited-state properties are characterized and compared in reaction centers (RCs) of wild-type (WT) Rhodobacter (Rb.) sphaeroides , and a mutant VR(L157), in which the near-infrared absorbance band associated with the primary electron donor, P, is missing. Energy transfer from the carotenoid (spheroidenone) S(2) and relaxed S(1) excited states to an adjacent monomeric-bacteriochlorophyll is unchanged between WT and the mutant RC samples.

View Article and Find Full Text PDF

The influence of the hydrogen bonds on the light-induced structural changes were studied in the wild type and 11 mutants with different hydrogen bonding patterns of the primary electron donor of reaction centers from Rhodobacter sphaeroides. Previously, using the same set of mutants at pH 8, a marked light-induced change of the local dielectric constant in the vicinity of the dimer was reported in wild type and in mutants retaining Leu L131 that correlated with the recovery kinetics of the charge-separated state [ Deshmukh et al. (2011) Biochemistry, 50, 340-348].

View Article and Find Full Text PDF

Conformational changes near the bacteriochlorophyll dimer induced by continuous illumination were identified in the wild type and 11 different mutants of reaction centers from Rhodobacter sphaeroides. The properties of the bacteriochlorophyll dimer, which has a different hydrogen bonding pattern with the surrounding protein in each mutant, were characterized by steady-state and transient optical spectroscopy. After illumination for 1 min, in the absence of the secondary quinone, the recovery of the charge-separated states was nearly 1 order of magnitude slower in one group of mutants including the wild type than in the mutants carrying the Leu to His mutation at the L131 position.

View Article and Find Full Text PDF

The influence of different anions on the binding and oxidation of manganous and ferrous cations was studied in four mutants of bacterial reaction centers that can bind and oxidize these metal ions. Light-minus-dark difference optical and electron paramagnetic resonance spectroscopies were applied to monitor electron transfer from bound divalent metal ions to the photo-oxidized bacteriochlorophyll dimer in the presence of five different anions. At pH 7, bicarbonate was found to be the most effective for both manganese and iron binding, with dissociation constants around 1 muM in three of the mutants.

View Article and Find Full Text PDF

The initial electron transfer rate and protein dynamics in wild type and five mutant reaction centers from Rhodobacter sphaeroides have been studied as a function of temperature (10-295 K). Detailed kinetic measurements of initial electron transfer in Rhodobacter sphaeroides reaction centers can be quantitatively described by a reaction diffusion formalism at all temperatures from 10 to 295 K. In this model, the time course of electron transfer is determined by the ability of the protein to interconvert between conformations until one is found where the activation energy for electron transfer is near zero.

View Article and Find Full Text PDF

In photosynthetic organisms, the utilization of solar energy to drive electron and proton transfer reactions across membranes is performed by pigment-protein complexes including bacterial reaction centers (BRCs) and photosystem II. The well-characterized BRC has served as a structural and functional model for the evolutionarily-related photosystem II for many years. Even though these complexes transfer electrons and protons across cell membranes in analogous manners, they utilize different secondary electron donors.

View Article and Find Full Text PDF

The initial electron transfer dynamics during photosynthesis have been studied in Rhodobacter sphaeroides reaction centers from wild type and 14 mutants in which the driving force and the kinetics of charge separation vary over a broad range. Surprisingly, the protein relaxation kinetics, as measured by tryptophan absorbance changes, are invariant in these mutants. By applying a reaction-diffusion model, we can fit the complex electron transfer kinetics of each mutant quantitatively, varying only the driving force.

View Article and Find Full Text PDF

The core structure of the photosynthetic reaction center is quasisymmetric with two potential pathways (called A and B) for transmembrane electron transfer. Both the pathway and products of light-induced charge separation depend on local electrostatic interactions and the nature of the excited states generated at early times in reaction centers isolated from Rhodobacter sphaeroides. Here transient absorbance measurements were recorded following specific excitation of the Q(y)() transitions of P (the special pair of bacteriochlorophylls), the monomer bacteriochlorophylls (B(A) and B(B)), or the bacteriopheophytins (H(A) and H(B)) as a function of both buffer pH and detergent in a reaction center mutant with the mutations L168 His to Glu and L170 Asn to Asp in the vicinity of P and B(B).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessione5p9pvaria88e35p3p01m18dah80anmg): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once