Publications by authors named "Joani Mato"

The primary focus of GAMESS over the last 5 years has been the development of new high-performance codes that are able to take effective and efficient advantage of the most advanced computer architectures, both CPU and accelerators. These efforts include employing density fitting and fragmentation methods to reduce the high scaling of well-correlated (e.g.

View Article and Find Full Text PDF

We use a Mg metal to extend the size regime of aqueous clusters to extrapolate to the bulk limit of the vertical detachment energy (VDE) of the solvated electron to >3,200, a value between 1 to over 2 orders of magnitude larger than the one previously measured experimentally or computed theoretically. We relate the VDE to the energy difference between the Mg(HO) and Mg(HO) systems and the metal's second ionization potential. The extrapolated bulk VDEs of the localized surface electron, which moves away from the metal as increases, are 1.

View Article and Find Full Text PDF

We examine the many-body expansion (MBE) for alkaline earth metal clusters, Be, Mg, Ca (n = 4, 5, 6), at the Møller-Plesset second order perturbation theory, coupled-cluster singles and doubles with perturbative triples, multi-reference perturbation theory, and multi-reference configuration interaction levels of theory. The magnitude of each term in the MBE is evaluated for several geometrical configurations. We find that the behavior of the MBE for these clusters depends strongly on the geometrical arrangement and, to a lesser extent, on the level of theory used.

View Article and Find Full Text PDF

We propose to generalize the previously developed two-layer permuted adaptive-partitioning quantum-mechanics/molecular-mechanics (QM/MM), which reclassifies atoms as QM or MM on-the-fly in dynamics simulations, to multilayer adaptive-partitioning algorithms that enable multiple levels of theory. In this work, we formulate two new algorithms that smoothly interpolate the energy between two QM (Q1 and Q2) levels of theory. The first "permuted adaptive-partitioning" scheme is based on the weighted many-body expansion of the potential, as in the adaptive-partitioning QM/MM.

View Article and Find Full Text PDF

This work examines the electronic structure and apparent instability of ethylenedione (OCCO), including an analysis of the singlet and triplet potential energy surfaces along the bending vibrations. While the singlet state is inherently unstable due to the Renner-Teller effect, theory predicts the triplet state to have a stable minimum on the potential energy surface. The stability of the triplet state is examined in detail, taking into account spin-orbit interactions.

View Article and Find Full Text PDF

A discussion of many of the recently implemented features of GAMESS (General Atomic and Molecular Electronic Structure System) and LibCChem (the C++ CPU/GPU library associated with GAMESS) is presented. These features include fragmentation methods such as the fragment molecular orbital, effective fragment potential and effective fragment molecular orbital methods, hybrid MPI/OpenMP approaches to Hartree-Fock, and resolution of the identity second order perturbation theory. Many new coupled cluster theory methods have been implemented in GAMESS, as have multiple levels of density functional/tight binding theory.

View Article and Find Full Text PDF

Semiempirical quantum mechanical (SEQM) methods offer an attractive middle ground between fully ab initio quantum chemistry and force-field simulations, allowing for a quantum mechanical treatment of the system at a relatively low computational cost. However, SEQM methods have not been frequently utilized in the study of transition metal systems, mostly due to the difficulty in obtaining reliable parameters. This paper examines the accuracy of the PM6 and PM7 semiempirical methods to predict geometries, ionization potentials, and HOMO-LUMO energy gaps of several bare gold clusters (Au) and thiolate-protected gold nanoclusters (AuSNCs).

View Article and Find Full Text PDF

Analytic non-adiabatic coupling matrix elements (NACME) are derived and implemented for the spin-flip occupation restricted multiple active space configuration interaction (SF-ORMAS-CI) method. SF-ORMAS is a general spin correct implementation of the SF-CI method and has been shown to correctly describe various stationary geometries, including regions of conical intersections. The availability of non-adiabatic coupling allows a fuller examination of non-adiabatic phenomena with the SF-ORMAS method.

View Article and Find Full Text PDF

Analytic nuclear gradients are derived and implemented for the recently introduced SF-ORMAS-CI (spin-flip occupation restricted multiple active space CI) method. Like most SF methods, SF-ORMAS-CI successfully describes bond breaking, diradical systems, transition states, and low-lying excited states, without suffering from spin contamination. The availability of analytic gradients now enables the efficient optimization of equilibrium structures in both ground and excited electronic states, as well as the computation of seminumerical Hessians.

View Article and Find Full Text PDF

A new, general spin-correct spin-flip configuration interaction (SF-CI) method is introduced by extending the occupation restricted multiple active spaces (ORMAS) CI method in GAMESS. SF-ORMAS is a single reference CI method that utilizes a high-spin restricted open shell determinant on which an arbitrary amount of spin-flipped excitations are carried out to generate a wave function of desired multiplicity. Furthermore, the SF-ORMAS method allows for a flexible design of the active space(s) to fit the chemical problem at hand.

View Article and Find Full Text PDF