Eur J Pharmacol
October 2021
Mitochondrial ATP-sensitive potassium channels (mitoKATP) locate in the inner mitochondrial membrane and possess protective cellular properties. mitoKATP opening-induced cardioprotection (using the pharmacological agent diazoxide) is preventable by antagonists, such as glibenclamide. However, the mechanisms of action of these drugs and how mitoKATP respond to them are poorly understood.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
February 2021
Oxidative stress, characterized by the accumulation of reactive oxygen species (ROS), is implicated in the pathogenesis of several diseases, including cardiac hypertrophy. The flavonoid quercetin is a potent ROS scavenger, with several beneficial effects for the cardiovascular system, including antihypertrophic effects. Oxidative imbalance has been implicated in cardiac hypertrophy and heart failure.
View Article and Find Full Text PDFBackground: Cardiac hypertrophy involves marked wall thickening or chamber enlargement. If sustained, this condition will lead to dysfunctional mitochondria and oxidative stress. Mitochondria have ATP-sensitive K+ channels (mitoKATP) in the inner membrane that modulate the redox status of the cell.
View Article and Find Full Text PDF