Riboflavin is the biological precursor of two important flavin cofactors-flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)-that are critical prosthetic groups in several redox enzymes. While dietary supplementation with riboflavin is a recognized support therapy in several inborn errors of metabolism, it has yet unproven benefits in several other pathologies affecting flavoproteins. This is the case for glutaric aciduria type I (GA-I), a rare neurometabolic disorder associated with mutations in the gene, which encodes for glutaryl-coenzyme A (CoA) dehydrogenase (GCDH).
View Article and Find Full Text PDFGlutaric Aciduria Type I (GA-I), is an autosomal recessive neurometabolic disease caused by mutations in the GCDH gene that encodes for glutaryl-CoA dehydrogenase (GCDH), a flavoprotein involved in the metabolism of tryptophan, lysine and hydroxylysine. Although over 200 disease mutations have been reported a clear correlation between genotype and phenotype has been difficult to establish. To contribute to a better molecular understanding of GA-I we undertook a detailed molecular study on two GCDH disease-related variants, GCDH-p.
View Article and Find Full Text PDF