Research into innovative food safety technologies has led to the development of smart packaging with embedded chemical sensors that can monitor food quality throughout the supply chain. Thermochromic materials (TM), which are able to dynamically change colour in response to temperature fluctuations, have proven to be reliable indicators of food quality in certain environments. Natural colourants such as curcumin are becoming increasingly popular for smart packaging due to their low toxicity, environmental friendliness and ability to change colour.
View Article and Find Full Text PDFPoly(p-xylylene) derivatives, widely known as Parylenes, have been considerably adopted by the scientific community for several applications, ranging from simple passive coatings to active device components. Here, we explore the thermal, structural, and electrical properties of Parylene C, and further present a variety of electronic devices featuring this polymer: transistors, capacitors, and digital microfluidic (DMF) devices. We evaluate transistors produced with Parylene C as a dielectric, substrate, and encapsulation layer, either semitransparent or fully transparent.
View Article and Find Full Text PDFLaser-induced graphene (LIG) is as a promising material for flexible microsupercapacitors (MSCs) due to its simple and cost-effective processing. However, LIG-MSC research and production has been centered on non-sustainable polymeric substrates, such as polyimide. In this work, it is presented a cost-effective, reproducible, and robust approach for the preparation of LIG structures via a one-step laser direct writing on chromatography paper.
View Article and Find Full Text PDFIndium oxide (InO)-based transparent conducting oxides (TCOs) have been widely used and studied for a variety of applications, such as optoelectronic devices. However, some of the more promising dopants (zirconium, hafnium, and tantalum) for this oxide have not received much attention, as studies have mainly focused on tin and zinc, and even fewer have been explored by solution processes. This work focuses on developing solution-combustion-processed hafnium (Hf)-doped InO thin films and evaluating different annealing parameters on TCO's properties using a low environmental impact solvent.
View Article and Find Full Text PDFNext-generation electrical nanoimprinting of a polymeric data sheet based on charge trapping phenomena is reported here. Carbon nanoparticles (CNPs) (waste carbon product) are deployed into a polymeric matrix (polyaniline) (PANI) as a charge trapping layer. The data are recorded on the CNPs-filled polyaniline device layer by "electro-typing" under a voltage pulse (V , from ±1 to ±7 V), which is applied to the device layer through a localized charge-injection method.
View Article and Find Full Text PDFThe present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
October 2013
In obtaining uniform array of ZnO 1D nanostructures, especially using solution based methods, the thickness and the morphology of the epitaxial seeds layer are very important. The paper presents the effect of the thickness and the morphology of the Al:ZnO seeds layer on the morphology and properties of ZnO nanowires array grown by hydrothermal method. Compact and vertically aligned ZnO 1D nanostructures were obtained.
View Article and Find Full Text PDFThe present work focuses on a qualitative analysis of localised I-V characteristics based on the nanostructure morphology of highly dense arrays of p-type NiO nano-pillars (NiO-NPs). Vertically aligned NiO-NPs have been grown on different substrates by using a glancing angle deposition (GLAD) technique. The preferred orientation of as grown NiO-NPs was controlled by the deposition pressure.
View Article and Find Full Text PDFField-effect-based devices are becoming a basic structural element in a new generation of microbiosensors. Reliable molecular characterization of DNA and/or RNA is of paramount importance for disease diagnostics and to follow up alterations in gene expression profiles. The use of such devices for point-of-need diagnostics has been hindered by the need of standard or real-time PCR amplification procedures.
View Article and Find Full Text PDFWe present a new approach for real-time monitoring of PCR amplification of a specific sequence from the human c-MYC proto-oncogene using a Ta(2)O(5) electrolyte-insulator-semiconductor (EIS) sensor. The response of the fabricated EIS sensor to cycle DNA amplification was evaluated and compared to standard SYBR-green fluorescence incorporation, showing it was possible to detect DNA concentration variations with 30 mV/μM sensitivity. The sensor's response was then optimized to follow in real-time the PCR amplification of c-MYC sequence from a genomic DNA sample attaining an amplification profile comparable to that of a standard real-time PCR.
View Article and Find Full Text PDF