Aging is associated with remodelling of immune and central nervous system responses resulting in behavioural impairments including social deficits. Growing evidence suggests that the gut microbiome is also impacted by aging, and we propose that strategies to reshape the aged gut microbiome may ameliorate some age-related effects on host physiology. Thus, we assessed the impact of gut microbiota depletion, using an antibiotic cocktail, on aging and its impact on social behavior and the immune system.
View Article and Find Full Text PDFAging has a significant impact on physiology with implications for central nervous system function coincident with increased vulnerability to stress exposures. A number of stress-sensitive molecular mechanisms are hypothesized to underpin age-related changes in brain function. Recent cumulative evidence also suggests that aging impacts gut microbiota composition.
View Article and Find Full Text PDFThere is growing appreciation of key roles of the gut microbiota in maintaining homeostasis and influencing brain and behaviour at critical windows across the lifespan. Mounting evidence suggests that communication between the gut and the brain could be the key to understanding multiple neuropsychiatric disorders, with the immune system coming to the forefront as an important mechanistic mediator. Throughout the lifespan, the immune system exchanges continuous reciprocal signals with the central nervous system.
View Article and Find Full Text PDFDepression remains one of the most prevalent psychiatric disorders, with many patients not responding adequately to available treatments. Chronic or early-life stress is one of the key risk factors for depression. In addition, a growing body of data implicates chronic inflammation as a major player in depression pathogenesis.
View Article and Find Full Text PDF