Publications by authors named "Joana Guerreiro"

This study investigates the effect of different linkers and solvents on the immobilization of DNA probes on graphene surfaces, which are crucial for developing high-performance biosensors. Quartz crystal microbalance with dissipation (QCM-D) measurements were used to characterize in situ and real-time the immobilization of ssDNA and hybridization efficiency on model graphene surfaces. The DNA probes immobilization kinetics and thermodynamics were systematically investigated for all the pairings between three bifunctional linkers─1-pyrenebutyric acid succinimidyl ester (PBSE), Fluorenylmethylsuccinimidyl carbonate (FSC), and Acridine Orange (AO) succinimidyl ester─and three organic solvents (DMF, DMSO, and 10% DMF/ethanol).

View Article and Find Full Text PDF

The widespread use of Recycled Manure Solids (RMS) as cow bedding material is not without risks, since cattle manure may act as a vehicle for pathogenic and antimicrobial resistant bacteria dissemination. Thus, our aim was to evaluate RMS-supplemented with a pine biochar produced in Portugal as a new cow bedding material, since the use of biochar has been shown to have the potential to mitigate the impact of relevant bacterial species when added to animal manure microbiota. Our experimental setup consisted on fresh RMS samples that were collected on a commercial dairy farm and placed in naturally-ventilated containers for a total of 4 groups: 1-non-supplemented RMS; 2-RMS supplemented with 2.

View Article and Find Full Text PDF

The genus includes ubiquitous bacteria frequently described as animal and human opportunistic pathogens. A 9-year-old cat was referred for rhinoscopy at the Veterinary Hospital of the Faculty of Veterinary Medicine, University of Lisbon, Portugal, for an investigation of the chronic respiratory signs. Upon rhinoscopy, nasal and nasopharyngeal discharge were observed, and the nasal turbinates showed signs of inflammation.

View Article and Find Full Text PDF

The present study describes an efficient method for the determination of polyphenol content in beverages based on a composite material of graphene oxide decorated with Prussian blue nanocubes (rGO/PBNCs). In this method, rGO/PBNCs act as a nanoenzyme with peroxidase-like catalytic activity and produce a colorimetric product in the presence of hydrogen peroxide and tetramethylbenzidine (TMB). To verify the effectiveness of the method, we used two model standards for antioxidants: gallic acid (GA) and tannic acid (TA).

View Article and Find Full Text PDF

Background: Glioblastoma is an extremely aggressive malignant tumor with a very poor prognosis. Due to the increased proliferation rate of glioblastoma, there is the development of hypoxic regions, characterized by an increased concentration of copper (Cu). Considering this, Cu has attracted attention as a possible theranostic radionuclide for glioblastoma.

View Article and Find Full Text PDF

Gallium and indium octahedral complexes with isoniazid derivative ligands were successfully prepared. The ligands, isonicotinoyl benzoylacetone (HL) and 4-chlorobenzoylacetone isonicotinoyl hydrazone (HL), and their respective coordination compounds with gallium and indium [GaL(HL)] (GaL), [GaL(HL)] (GaL), [InL(HL)] (InL) and [InL(HL)] (InL) were investigated by NMR, ESI-MS, UV-Vis, IR, single-crystal X-ray diffraction and elemental analysis. In vitro interaction studies with human serum albumin (HSA) evidenced a moderate affinity of all complexes with HSA through spontaneous hydrophobic interactions.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed.

View Article and Find Full Text PDF

The cytotoxic activity of four sets of camphorimine complexes based on the Cu(I), Cu(II), Ag(I), and Au(I) metal sites were assessed against the cisplatin-sensitive A2780 and OVCAR3 ovarian cancer cells. The results showed that the gold complexes were ca. one order of magnitude more active than the silver complexes, which in turn were ca.

View Article and Find Full Text PDF

Although Tc is not an ideal Auger electron (AE) emitter for Targeted Radionuclide Therapy (TRT) due to its relatively low Auger electron yield, it can be considered a readily available "model" radionuclide useful to validate the design of new classes of AE-emitting radioconjugates. With this in mind, we performed a detailed study of the radiobiological effects and mechanisms of cell death induced by the dual-targeted radioconjugates and (TPP = triphenylphosphonium; AO = acridine orange; BBN = bombesin derivative) in human prostate cancer PC3 cells. and caused a remarkably high reduction of the survival of PC3 cells when compared with the single-targeted congener , leading to an augmented formation of γH2AX foci and micronuclei.

View Article and Find Full Text PDF

The biological properties of sixteen structurally related monoanionic gold (III) bis(dithiolene/ diselenolene) complexes were evaluated. The complexes differ in the nature of the heteroatom connected to the gold atom (AuS for dithiolene, AuSe for diselenolene), the substituent on the nitrogen atom of the thiazoline ring (Me, Et, Pr, iPr and Bu), the nature of the exocyclic atom or group of atoms (O, S, Se, C(CN)) and the counter-ion (PhP or EtN). The anticancer and antimicrobial activities of all the complexes were investigated, while the anti-HIV activity was evaluated only for selected complexes.

View Article and Find Full Text PDF

Purpose: The aim of our study was to assess if the sodium salt of cobaltabis(dicarbollide) and its di-iodinated derivative (Na[-COSAN] and Na[8,8'-I--COSAN]) could be promising agents for dual anti-cancer treatment (chemotherapy + BNCT) for GBM.

Methods: The biological activities of the small molecules were evaluated in vitro with glioblastoma cells lines U87 and T98G in 2D and 3D cell models and in vivo in the small model animal () at the L4-stage and using the eggs.

Results: Our studies indicated that only spheroids from the U87 cell line have impaired growth after treatment with both compounds, suggesting an increased resistance from T98G spheroids, contrary to what was observed in the monolayer culture, which highlights the need to employ 3D models for future GBM studies.

View Article and Find Full Text PDF

Although much progress has been made in cancer treatment, the molecular mechanisms underlying cancer radioresistance (RR) as well as the biological signatures of radioresistant cancer cells still need to be clarified. In this regard, we discovered that breast, bladder, lung, neuroglioma, and prostate 6 Gy X-ray resistant cancer cells were characterized by an increase of lipid droplet (LD) number and that the cells containing highest LDs showed the highest clonogenic potential after irradiation. Moreover, we observed that LD content was tightly connected with the iron metabolism and in particular with the presence of the ferritin heavy chain (FTH1).

View Article and Find Full Text PDF

The continuous spread of invasive alien species, as zebra mussel (Dreissena polymorpha), is a major global concern and it is urgent to stop it. Early stages of an invasion are crucial and challenging; however, detection tools based on environmental DNA analysis are promising alternatives. We present an alternative DNA target amplification strategy for signal enhancement followed by dual-mode colorimetric naked eye and optical smartphone analysis for the early detection of zebra mussel environmental DNA.

View Article and Find Full Text PDF

Purification and concentration of DNA is a critical step on DNA-based analysis, which should ensure efficient DNA isolation and effective removal of contaminants that may interfere with downstream DNA amplification. Complexity of samples, minute content of target analyte, or high DNA fragmentation greatly entangles the success of this step. To overcome this issue, we designed and fabricated a novel miniaturized disposable device for a highly efficient DNA purification.

View Article and Find Full Text PDF

Liquid-gated Graphene Field-Effect Transistors (GFET) are ultrasensitive bio-detection platforms carrying out the graphene's exceptional intrinsic functionalities. Buffer and dilution factor are prevalent strategies towards the optimum performance of the GFETs. However, beyond the Debye length (λD), the role of the graphene-electrolytes' ionic species interactions on the DNA behavior at the nanoscale interface is complicated.

View Article and Find Full Text PDF

Prostate cancer (PCa) is the second most common cancer type in men, and in advanced metastatic stages is considerable incurable. This justifies the need for efficient early diagnostic methods and novel therapies, particularly radiopharmaceuticals with the potential for simultaneous diagnosis and therapy (theranostics). We have previously demonstrated, using monolayer-cultured cells, that copper-64 chloride, a promising theranostic agent for PCa, has the potential to induce significant damage in cancer cells while having minimal side effects in healthy tissues.

View Article and Find Full Text PDF

The anticancer, antimicrobial and antiplasmodial activities of six gold(iii) bis(dithiolene) complexes were studied. Complexes 1-6 showed relevant anticancer properties against A2780/A2780cisR ovarian cancer cells (IC50 values of 0.08-2 μM), also being able to overcome cisplatin resistance in A2780cisR cells.

View Article and Find Full Text PDF

Gliomas are the most common type of primary brain tumors, presenting high mortality and recurrence rates that highlight the need for the development of more efficient therapies. In that context, we investigated iron(iii) (FeL) and copper(ii) (CuL) complexes containing the tetradentate ligand 2-{[(3-chloro-2-hydroxy-propyl)-pyridin-2-ylmethyl-amino]-methyl}-phenol (L) as potential antimetastatic compounds in glioma cells. These complexes were designed to act as mimetics of antioxidant metalloenzymes (catalases and superoxide dismutase) and thus interfere with the production of reactive oxygen species (ROS), important signaling molecules that have been linked to the induction of Epithelial-Mesenchymal Transition (EMT) in cancer cells, a process associated with cancer invasion and aggressiveness.

View Article and Find Full Text PDF

The emergence of resistance to antimicrobial and anticancer drugs poses severe threats to public health worldwide, highlighting the need for more efficient treatments. Here, four monoanionic Au bisdithiolate complexes [Au(mnt)] (where mnt = 1,1-dicyanoethylene-2,2-dithiolate)(1), [Au(i-mnt)] (where i-mnt = 2,2-dicyanoethylene-1,1-dithiolate)(2), [Au(cdc)] (where cdc = cyanodithioimido carbonate)(3), and [Au(qdt)] (where qdt = quinoxaline-2,3-dithiolate)(4) were screened for their antimicrobial and antitumor activities. Complexes 3 and 4 showed antibacterial activity against Staphylococcus aureus [minimal inhibitory concentration (MIC) = 15.

View Article and Find Full Text PDF

Lignin is one of the most promising and versatile products obtained in biorefineries due to its diverse therapeutic properties such as antimicrobial, antioxidant and anti-inflammatory activity. However, these properties depend on the source of lignin and the way it was isolated from the biomass. In this study, four different lignins are compared (extracted with Aquasolv (ASL1, ASL2), Organosolv (OSL) and Alkali (ALK) processes) for their cellular antioxidant capacity, anti-diabetic activity, free radical scavenging and cytotoxicity.

View Article and Find Full Text PDF

Accurate and sensitive identification of DNA mutations in tumor cells is critical to the diagnosis, prognosis and personalized therapy of cancer. Conventional polymerase chain reaction (PCR)-based methods are limited by the complicated amplification process. Herein, an amplification-free surface enhanced Raman spectroscopy (SERS) approach which directly detects point mutations in cancer cells has been proposed.

View Article and Find Full Text PDF

In this work, we develop a field-effect transistor with a two-dimensional channel made of a single graphene layer to achieve label-free detection of DNA hybridization down to attomolar concentration, while being able to discriminate a single nucleotide polymorphism (SNP). The SNP-level target specificity is achieved by immobilization of probe DNA on the graphene surface through a pyrene-derivative heterobifunctional linker. Biorecognition events result in a positive gate voltage shift of the graphene charge neutrality point.

View Article and Find Full Text PDF

CuCl₂ has recently been proposed as a promising agent for prostate cancer (PCa) theranostics, based on preclinical studies in cellular and animal models, and on the increasing number of human studies documenting its use for PCa diagnosis. Nevertheless, the use of CuCl₂ raises important radiobiological questions that have yet to be addressed. In this work, using a panel of PCa cell lines in comparison with a non-tumoral prostate cell line, we combined cytogenetic approaches with radiocytotoxicity assays to obtain significant insights into the cellular consequences of exposure to CuCl₂.

View Article and Find Full Text PDF

Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular mechanisms underlying response and adaptation to acetic acid have been studied for years, only recently they have been examined in more detail in .

View Article and Find Full Text PDF

response and tolerance to acetic acid is critical in industrial biotechnology and in acidic food and beverages preservation. The gene, encoding a protein kinase of unknown function belonging to the "Npr1-family" of kinases known to be involved in the regulation of plasma membrane transporters, is an important determinant of acetic acid tolerance. This study was performed to identify the alterations occurring in yeast membrane phosphoproteome profile during the adaptive early response to acetic acid stress (following 1 h of exposure to a sub-lethal inhibitory concentration; 50 mM at pH 4.

View Article and Find Full Text PDF