The intricate mechanisms underlying transcription-dependent genome instability involve G-quadruplexes (G4) and R-loops. This perspective elucidates the potential link between these structures and genome instability in aging. The co-occurrence of G4 DNA and RNA-DNA hybrid structures (G-loop) underscores a complex interplay in genome regulation and instability.
View Article and Find Full Text PDFBackground: DNA methylation is involved in the epigenetic regulation of gene expression during developmental processes and is primarily established by the DNA methyltransferase 3A (DNMT3A) and 3B (DNMT3B). DNMT3A is one of the most frequently mutated genes in clonal hematopoiesis and leukemia, indicating that it plays a crucial role for hematopoietic differentiation. However, the functional relevance of Dnmt3a for hematopoietic differentiation and hematological malignancies has mostly been analyzed in mice, with the specific role for human hematopoiesis remaining elusive.
View Article and Find Full Text PDFBackground: Differentiation of induced pluripotent stem cells (iPSCs) toward hematopoietic progenitor cells (HPCs) raises high hopes for disease modeling, drug screening, and cellular therapy. Various differentiation protocols have been established to generate iPSC-derived HPCs (iHPCs) that resemble their primary counterparts in morphology and immunophenotype, whereas a systematic epigenetic comparison was yet elusive.
Results: In this study, we compared genome-wide DNA methylation (DNAm) patterns of iHPCs with various different hematopoietic subsets.
De novo DNA methyltransferase 3A (DNMT3A) plays pivotal roles in hematopoietic differentiation. In this study, we followed the hypothesis that alternative splicing of has characteristic epigenetic and functional sequels. Specific transcripts were either down-regulated or overexpressed in human hematopoietic stem and progenitor cells, and this resulted in complementary and transcript-specific DNA methylation and gene expression changes.
View Article and Find Full Text PDFBackground: Transplantation of human hematopoietic stem cells into immunodeficient mice provides a powerful in vivo model system to gain functional insights into hematopoietic differentiation. So far, it remains unclear if epigenetic changes of normal human hematopoiesis are recapitulated upon engraftment into such "humanized mice." Mice have a much shorter life expectancy than men, and therefore, we hypothesized that the xenogeneic environment might greatly accelerate the epigenetic clock.
View Article and Find Full Text PDFBackground: White blood cell counts are routinely measured with automated hematology analyzers, by flow cytometry, or by manual counting. Here, we introduce an alternative approach based on DNA methylation (DNAm) at individual CG dinucleotides (CpGs).
Methods: We identified candidate CpGs that were nonmethylated in specific leukocyte subsets.
In vitro culture of hematopoietic stem and progenitor cells (HPCs) is supported by a suitable cellular microenvironment, such as mesenchymal stromal cells (MSCs)-but MSCs are heterogeneous and poorly defined. In this study, we analyzed whether MSCs derived from induced pluripotent stem cells (iPS-MSCs) provide a suitable cellular feeder layer too. iPS-MSCs clearly supported proliferation of HPCs, maintenance of a primitive immunophenotype (CD34(+), CD133(+), CD38(-)), and colony-forming unit (CFU) potential of CD34(+) HPCs.
View Article and Find Full Text PDFStandardization of mesenchymal stromal cells (MSCs) is hampered by the lack of a precise definition for these cell preparations; for example, there are no molecular markers to discern MSCs and fibroblasts. In this study, we followed the hypothesis that specific DNA methylation (DNAm) patterns can assist classification of MSCs. We utilized 190 DNAm profiles to address the impact of tissue of origin, donor age, replicative senescence, and serum supplements on the epigenetic makeup.
View Article and Find Full Text PDFClin Epigenetics
November 2015
Background: Epigenetic aberrations play a central role in the pathophysiology of acute myeloid leukemia (AML). It has been shown that molecular signatures based on DNA-methylation (DNAm) patterns can be used for classification of the disease. In this study, we followed the hypothesis that DNAm at a single CpG site might support risk stratification in AML.
View Article and Find Full Text PDFStandardization of mesenchymal stromal cells (MSCs) remains a major obstacle in regenerative medicine. Starting material and culture expansion affect cell preparations and render comparison between studies difficult. In contrast, induced pluripotent stem cells (iPSCs) assimilate toward a ground state and may therefore give rise to more standardized cell preparations.
View Article and Find Full Text PDF