Background: Spermatogonial stem cell transplantation (SSCT) is proposed as a fertility therapy for childhood cancer survivors. SSCT starts with cryopreserving a testicular biopsy prior to gonadotoxic treatments such as cancer treatments. When the childhood cancer survivor reaches adulthood and desires biological children, the biopsy is thawed and SSCs are propagated in vitro and subsequently auto-transplanted back into their testis.
View Article and Find Full Text PDFThe production of highly specialized spermatozoa from undifferentiated spermatogonia is a strictly organized and programmed process requiring extensive restructuring of the entire cell. One of the most remarkable cellular transformations accompanying the various phases of spermatogenesis is the profound remodelling of the nuclear architecture, in which the nuclear envelope (NE) seems to be crucially involved. In recent years, several proteins from the distinct layers forming the NE (i.
View Article and Find Full Text PDFTorsinA is a member of the AAA+ superfamily of adenosine triphosphatases. These AAA+ proteins have numerous biological functions, including vesicle fusion, cytoskeleton dynamics, intracellular trafficking, protein folding, and degradation as well as organelle biogenesis. Of particular interest is torsinA, which is mainly located in the endoplasmic reticulum (ER) and nuclear envelope (NE).
View Article and Find Full Text PDFIn medicine, safety and efficacy are the two pillars on which the implementation of novel treatments rest. To protect the patient from unnecessary or unsafe treatments, usually, a stringent path of (pre) clinical testing is followed before a treatment is introduced into routine patient care. However, in reproductive medicine several techniques have been clinically introduced without elaborate preclinical studies.
View Article and Find Full Text PDFSpermatogenesis comprises highly complex differentiation processes. Nuclear envelope (NE) proteins have been associated with these processes, including lamins, lamina-associated polypeptide (LAP) 2 and the lamin B-receptor. LAP1 is an important NE protein whose function has not been fully elucidated, but several binding partners allow predicting putative LAP1 functions.
View Article and Find Full Text PDFBRI2 is a ubiquitously expressed type II transmembrane phosphoprotein. BRI2 undergoes proteolytic processing into secreted fragments and during the maturation process it suffers post-translational modifications. Of particular relevance, BRI2 is a protein phosphatase 1 (PP1) interacting protein, where PP1 is able to dephosphorylate the former.
View Article and Find Full Text PDFMembranes (Basel)
January 2016
Lamina-associated polypeptide 1 (LAP1) is a type II transmembrane protein of the inner nuclear membrane encoded by the human gene TOR1AIP1. LAP1 is involved in maintaining the nuclear envelope structure and appears be involved in the positioning of lamins and chromatin. To date, LAP1's precise function has not been fully elucidated but analysis of its interacting proteins will permit unraveling putative associations to specific cellular pathways and cellular processes.
View Article and Find Full Text PDF