Publications by authors named "Joana B Loureiro"

The protein p53 is a transcription factor with several key roles in cells, including acting as a tumour suppressor. In most human cancers its tumour suppressor function is inactivated, either through inhibition by negative regulators or by mutation in the TP53 gene. Thus, there is a high interest in developing molecules able to activate p53 tumour suppressor activity.

View Article and Find Full Text PDF

We previously reported that chalcone () and diarylpentanoid () induced p53-dependent growth inhibitory activity in human cancer cells. Herein, () and () analogues were designed and synthesized in order to obtain more potent and selective compounds. Compounds , , , , and - caused pronounced in vitro growth inhibitory activity in HCT116 cells (0.

View Article and Find Full Text PDF

For the first time, the pharmacokinetic (PK) profile of tryptophanol-derived isoindolinones, previously reported as p53 activators, was investigated. From the metabolites' identification, performed by liquid chromatography coupled to high resolution tandem mass spectrometry (LC-HRMS/MS), followed by their preparation and structural elucidation, it was possible to identify that the indole C2 and C3 are the main target of the cytochrome P450 (CYP)-promoted oxidative metabolism in the tryptophanol-derived isoindolinone scaffold. Based on these findings, to search for novel p53 activators a series of 16 enantiopure tryptophanol-derived isoindolinones substituted with a bromine in indole C2 was prepared, in yields of 62-89%, and their antiproliferative activity evaluated in human colon adenocarcinoma HCT116 cell lines with and without p53.

View Article and Find Full Text PDF

Metabolic reprogramming is a central hub in tumor development and progression. Therefore, several efforts have been developed to find improved therapeutic approaches targeting cancer cell metabolism. Recently, we identified the 7-acetoxy-6-benzoyloxy-12--benzoylroyleanone (Roy-Bz) as a PKCδ-selective activator with potent anti-proliferative activity in colon cancer by stimulating a PKCδ-dependent mitochondrial apoptotic pathway.

View Article and Find Full Text PDF

Herein, the synthesis and anticancer activity evaluation of a series of novel β-carbolines is reported. The reactivity of nitrosoalkenes towards indole was explored for the synthesis of novel tryptophan analogs where the carboxylic acid was replaced by a triazole moiety. This tryptamine was used in the synthesis of 3-(1,2,3-triazol-4-yl)-β-carbolines via Pictet-Spengler condensation followed by an oxidative step.

View Article and Find Full Text PDF

Aiming to find Amaryllidaceae alkaloids against breast cancer, including the highly aggressive triple-negative breast cancer, the phytochemical study of was carried out. Several Amaryllidaceae-type alkaloids, bearing scaffolds of the haemanthamine-, homolycorine-, lycorine-, galanthamine-, and tazettine-type were isolated (-), along with one alkamide () and a phenolic compound (). The antiproliferative effect of compounds (-) was evaluated by the sulforhodamine B assay against triple-negative breast cancer cell lines MDA-MB-231 and MDA-MB-468, breast cancer cells MCF-7, and the non-malignant fibroblast (HFF-1) and breast (MCF12A) cell lines.

View Article and Find Full Text PDF

The growing incidence of skin cancer (SC) has prompted the search for additional preventive strategies to counteract this global health concern. Mutant p53 (mutp53), particularly with ultraviolet radiation (UVR) signature, has emerged as a promising target for SC prevention based on its key role in skin carcinogenesis. Herein, the preventive activity of our previously disclosed mutp53 reactivator SLMP53-2 against UVR-induced SC was investigated.

View Article and Find Full Text PDF

In silico studies of a library of diarylpentanoids led us to the identification of potential new MDM2/X ligands. The diarylpentanoids with the best docking scores obeying the druglikeness and ADMET prediction properties were subsequently synthesized and evaluated for their antiproliferative activity on colon cancer HCT116 and fibroblasts HFF-1 cells. The effect on p53-MDM2/X interactions was evaluated through yeast-based assays for compounds showing potent antiproliferative activity in HCT116 cells and low toxicity in normal cells, resulting in the identification of a potential dual inhibitor.

View Article and Find Full Text PDF

Melanoma is the deadliest form of skin cancer, primarily due to its high metastatic propensity and therapeutic resistance in advanced stages. The frequent inactivation of the p53 tumour suppressor protein in melanomagenesis may predict promising outcomes for p53 activators in melanoma therapy. Herein, we aimed to investigate the antitumor potential of the p53-activating agent SLMP53-2 against melanoma.

View Article and Find Full Text PDF

The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53.

View Article and Find Full Text PDF

Increasing emphasis has been given to prevention as a feasible approach to reduce the cancer burden. However, for its clinical success, further advances are required to identify effective chemopreventive agents. This review affords a critical and up-to-date discussion of issues related to cancer prevention, including an in-depth knowledge on BRCA1 and p53 tumor suppressor proteins as key molecular players.

View Article and Find Full Text PDF

Background: Half of human cancers harbour TP53 mutations that render p53 inactive as a tumor suppressor. As such, reactivation of mutant (mut)p53 through restoration of wild-type (wt)-like function represents one of the most promising therapeutic strategies in cancer treatment. Recently, we have reported the (S)-tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a new reactivator of wt and mutp53 R280K with in vitro and in vivo p53-dependent antitumor activity.

View Article and Find Full Text PDF

Half of human cancers harbor mutations that render p53 inactive as a tumor suppressor. In these cancers, reactivation of mutant p53 (mutp53) through restoration of wild-type-like function constitutes a valuable anticancer therapeutic strategy. In order to search for mutp53 reactivators, a small library of tryptophanol-derived oxazoloisoindolinones was synthesized and the potential of these compounds as mutp53 reactivators and anticancer agents was investigated in human tumor cells and xenograft mouse models.

View Article and Find Full Text PDF

Xanthone scaffold has been regarded as an attractive chemical tool in the search for bioactive molecules with antitumor activity, and in particular two xanthone derivatives, 12-hydroxy-2,2-dimethyl-3,4-dihydro-2,6-pyrano [3,2-]xanthen-6-one () and 3,4-dimethoxy-9-oxo-9-xanthene-1-carbaldehyde (), were described as a murine double minute 2 (MDM2)-p53 inhibitor and a TAp73 activator, respectively. The xanthone was used as a starting point for the construction of a library of 3,4-dioxygenated xanthones bearing chemical moieties of described MDM2-p53 inhibitors. Eleven aminated xanthones were successfully synthesized and initially screened for their ability to disrupt the MDM2-p53 interaction using a yeast cell-based assay.

View Article and Find Full Text PDF

TAp73 is a key tumor suppressor protein, regulating the transcription of unique and shared p53 target genes with crucial roles in tumorigenesis and therapeutic response. As such, in tumors with impaired p53 signaling, like neuroblastoma, TAp73 activation represents an encouraging strategy, alternative to p53 activation, to suppress tumor growth and chemoresistance. In this work, we report a new TAp73-activating agent, the 1-carbaldehyde-3,4-dimethoxyxanthone (LEM2), with potent antitumor activity.

View Article and Find Full Text PDF

Background And Purpose: Impairment of the tumour suppressor p53 pathway is a major event in human cancers, making p53 activation one of the most attractive therapeutic strategies to halt cancer. Here, we have identified a new selective p53 activator and investigated its potential as an anticancer agent.

Experimental Approach: Anti-proliferative activity of the (R)-tryptophanol-derived bicyclic lactam SYNAP was evaluated in a range of human cancer cells with different p53 status.

View Article and Find Full Text PDF

Prenylation of several bioactive scaffolds is a very interesting strategy used in Medicinal Chemistry in order to improve biological/pharmacological effects. A small library of prenylchalcones was synthesized and evaluated for the ability to inhibit the MDM2-p53 interaction using a yeast-based assay. The capacity of all synthesized prenylchalcones and their non-prenylated precursors to inhibit the growth of human colon tumor HCT116 cells was also evaluated.

View Article and Find Full Text PDF

Protein kinase C (PKC) isozymes play major roles in human diseases, including cancer. Yet, the poor understanding of isozymes-specific functions and the limited availability of selective pharmacological modulators of PKC isozymes have limited the clinical translation of PKC-targeting agents. Here, we report the first small-molecule PKCδ-selective activator, the 7α-acetoxy-6β-benzoyloxy-12-O-benzoylroyleanone (Roy-Bz), which binds to the PKCδ-C1-domain.

View Article and Find Full Text PDF

The transcription factor p53 plays a crucial role in cancer development and dissemination, and thus, p53-targeted therapies are among the most encouraging anticancer strategies. In human cancers with wild-type (wt) p53, its inactivation by interaction with murine double minute (MDM)2 and MDMX is a common event. Simultaneous inhibition of the p53 interaction with both MDMs is crucial to restore the tumor suppressor activity of p53.

View Article and Find Full Text PDF