Publications by authors named "Joan Verdaguer"

The transgenic 116C-NOD mouse strain exhibits a prevalent Th17 phenotype, and reduced type 1 diabetes (T1D) compared to non-obese diabetic (NOD) mice. A cohousing experiment between both models revealed lower T1D incidence in NOD mice cohoused with 116C-NOD, associated with gut microbiota changes, reduced intestinal permeability, shifts in T and B cell subsets, and a transition from Th1 to Th17 responses. Distinct gut bacterial signatures were linked to T1D in each group.

View Article and Find Full Text PDF

Here, we present a protocol to study and describe immune cells that surround or infiltrate tumor cells or get through the body of a melanoma syngeneic mice model. We describe steps for creating and establishing the syngeneic mouse model, euthanasia, and tumor or organ harvest. We then detail procedures to rapidly achieve a single-cell suspension from different tissue samples to further quantify and analyze the phenotype of the immune cell population (lymphocytes T and B, tumor-associated macrophages, and myeloid-derived suppressor cells) by flow cytometry.

View Article and Find Full Text PDF

Introduction: During the development of Autoimmune Diabetes (AD) an autoimmune attack against the Peripheral Nervous System occurs. To gain insight into this topic, analyses of Dorsal Root Ganglia (DRG) from Non-Obese Diabetic (NOD) mice were carried out.

Methods: Histopathological analysis by electron and optical microscopy in DRG samples, and mRNA expression analyzes by the microarray technique in DRG and blood leukocyte samples from NOD and C57BL/6 mice were performed.

View Article and Find Full Text PDF

Autoimmune diseases (AIDs) are caused by the loss of self-tolerance and destruction of tissues by the host's immune system. Several antigen-specific immunotherapies, focused on arresting the autoimmune attack, have been tested in clinical trials with discouraging results. Therefore, there is a need for innovative strategies to restore self-tolerance safely and definitively in AIDs.

View Article and Find Full Text PDF

Background: Pancreatic islets are exposed to strong pro-apoptotic stimuli: inflammation and hyperglycemia, during the progression of the autoimmune diabetes (T1D). We found that the downregulated by inflammation in the T1D prone NOD (non-obese diabetic) mouse model. The aim of this study is to determine the role of CDK11 in the pathogenesis of T1D and to assess the hierarchical relationship between CDK11 and Cyclin D3 in beta cell viability, since Cyclin D3, a natural ligand for CDK11, promotes beta cell viability and fitness in front of glucose.

View Article and Find Full Text PDF

Type 1 diabetes is an autoimmune disease caused by the destruction of the insulin-producing β-cells. An ideal immunotherapy should combine the blockade of the autoimmune response with the recovery of functional target cell mass. With the aim to develop new therapies for type 1 diabetes that could contribute to β-cell mass restoration, a drug repositioning analysis based on systems biology was performed to identify the β-cell regenerative potential of commercially available compounds.

View Article and Find Full Text PDF

Background/objective: Ingenol mebutate gel is approved for actinic keratosis field therapy, but little has been published as a treatment of basal cell carcinoma (BCC). Our objective is to characterise the histopathological changes and the infiltrating cell populations to better understand its mechanism of action.

Methods: Sixteen patients with various BCC subtypes were prospectively evaluated and treated once daily for two consecutive days with ingenol mebutate gel 0.

View Article and Find Full Text PDF

Previous studies indicate that B-lymphocytes play a key role activating diabetogenic T-lymphocytes during the development of autoimmune diabetes. Recently, two transgenic NOD mouse models were generated: the NOD- and the 116C-NOD mice. In NOD- mice, B-lymphocytes acquire an activated proliferative phenotype and support accelerated autoimmune diabetes development.

View Article and Find Full Text PDF

Type 1 diabetes can be overcome by regulatory T cells (Treg) in NOD mice yet an efficient method to generate and maintain antigen-specific Treg is difficult to come by. Here, we devised a combination therapy of peptide/MHC tetramers and IL-2/anti-IL-2 monoclonal antibody complexes to generate antigen-specific Treg and maintain them over extended time periods. We first optimized treatment protocols conceived to obtain an improved islet-specific Treg/effector T cell ratio that led to the in vivo expansion and activation of these Treg as well as to an improved suppressor function.

View Article and Find Full Text PDF

Type 1 diabetes (T1D) is a metabolic disease caused by the autoimmune destruction of insulin-producing β-cells. With its incidence increasing worldwide, to find a safe approach to permanently cease autoimmunity and allow β-cell recovery has become vital. Relying on the inherent ability of apoptotic cells to induce immunological tolerance, we demonstrated that liposomes mimicking apoptotic β-cells arrested autoimmunity to β-cells and prevented experimental T1D through tolerogenic dendritic cell (DC) generation.

View Article and Find Full Text PDF

While the autoimmune destruction of pancreatic ß-cells underlying type 1 diabetes (1D) development is ultimately mediated by T-cells in NOD mice and also likely humans, B-lymphocytes play an additional key pathogenic role. It appears expression of plasma membrane bound immunoglobulin (Ig) molecules that efficiently capture ß-cell antigens allows autoreactive B-lymphocytes bypassing normal tolerance induction processes to be the subset of antigen presenting cells most efficiently activating diabetogenic T-cells. NOD mice transgenically expressing Ig molecules recognizing antigens that are (insulin) or not (hen egg lysozyme; HEL) expressed by ß-cells have proven useful in dissecting the developmental basis of diabetogenic B-lymphocytes.

View Article and Find Full Text PDF

Autoreactive B lymphocytes play a key role as APCs in diaebetogenesis. However, it remains unclear whether B-cell tolerance is compromised in NOD mice. Here, we describe a new B lymphocyte transgenic NOD mouse model, the 116C-NOD mouse, where the transgenes derive from an islet-infiltrating B lymphocyte of a (8.

View Article and Find Full Text PDF

Introduction: The development of new therapies to induce self-tolerance has been an important medical health challenge in type 1 diabetes. An ideal immunotherapy should inhibit the autoimmune attack, avoid systemic side effects and allow β-cell regeneration. Based on the immunomodulatory effects of apoptosis, we hypothesized that apoptotic mimicry can help to restore tolerance lost in autoimmune diabetes.

View Article and Find Full Text PDF

Type 1 diabetes is an autoimmune condition caused by the lymphocyte-mediated destruction of the insulin-producing β cells in pancreatic islets. We aimed to identify final molecular entities targeted by the autoimmune assault on pancreatic β cells that are causally related to β cell viability. Here, we show that cyclin D3 is targeted by the autoimmune attack on pancreatic β cells in vivo.

View Article and Find Full Text PDF

Autoreactive B cells are essential for the pathogenesis of type 1 diabetes. The genesis and dynamics of autoreactive B cells remain unknown. In this study, we analyzed the immune response in the NOD mouse model to the neuronal protein peripherin (PRPH), a target Ag of islet-infiltrating B cells.

View Article and Find Full Text PDF

Introduction: Efferocytosis is a crucial process by which apoptotic cells are cleared by phagocytes, maintaining immune tolerance to self in the absence of inflammation. Peripheral tolerance, lost in autoimmune processes, may be restored by the administration of autologous dendritic cells loaded with islet apoptotic cells in experimental type 1 diabetes.

Objective: To evaluate tolerogenic properties in dendritic cells induced by the clearance of apoptotic islet cells, thus explaining the re-establishment of tolerance in a context of autoimmunity.

View Article and Find Full Text PDF

Type 1 diabetes is a metabolic disease caused by autoimmunity towards β -cells. Different strategies have been developed to restore β -cell function and to reestablish immune tolerance to prevent and cure the disease. Currently, there is no effective treatment strategy to restore endogenous insulin secretion in patients with type 1 diabetes.

View Article and Find Full Text PDF

Background: The aim of this study was to characterize the clinical characteristics and insulin secretion in adults with latent autoimmune diabetes in adults (LADA). We also compared these characteristics in subjects with antibody-negative type 2 diabetes (T2DM) or adult-onset type 1 diabetes (T1DM) to subjects with LADA.

Methods: In this cross-sectional study, 82 patients with LADA, 78 with T1DM and 485 with T2DM were studied.

View Article and Find Full Text PDF

Objective: The approximately 45-cM insulin-dependent diabetes 9 (Idd9) region on mouse chromosome 4 harbors several different type 1 diabetes-associated loci. Nonobese diabetic (NOD) mice congenic for the Idd9 region of C57BL/10 (B10) mice, carrying antidiabetogenic alleles in three different Idd9 subregions (Idd9.1, Idd9.

View Article and Find Full Text PDF

Rearrangement analysis of immunoglobulin genes is an exceptional opportunity to look back at the B lymphocyte differentiation during ontogeny and the subsequent immune response, and thus to study the selective pressures involved in autoimmune disorders. In a recent study to characterize the antigenic specificity of B lymphocytes during T1D progression, we generated hybridomas of islet-infiltrating B lymphocytes from NOD mice and other related strains developing insulitis, but with different degrees of susceptibility to T1D. We found that a sizable proportion of hybridomas produced monoclonal antibodies reactive to peripherin, an intermediate filament protein mainly found in the peripheral nervous system.

View Article and Find Full Text PDF

Most of our knowledge of the antigenic repertoire of autoreactive B lymphocytes in type 1 diabetes (T1D) comes from studies on the antigenic specificity of both circulating islet-reactive autoantibodies and peripheral B lymphocyte hybridomas generated from human blood or rodent spleen. In a recent study, we generated hybridoma cell lines of infiltrating B lymphocytes from different mouse strains developing insulitis, but with different degrees of susceptibility to T1D, to characterize the antigenic specificity of islet-infiltrating B lymphocytes during progression of the disease. We found that many hybridomas produced mAbs restricted to the peripheral nervous system (PNS), thus indicating an active B lymphocyte response against PNS elements in the pancreatic islet during disease development.

View Article and Find Full Text PDF

B-cells participate in the autoimmune response that precedes the onset of type 1 diabetes, but how these cells contribute to disease progression is unclear. In this study, we analyzed the phenotype and functional characteristics of islet-infiltrating B-cells in the diabetes-prone NOD mouse and in the insulitis-prone but diabetes-resistant (NOD x NOR)F1 mouse. The results indicate that B-cells accumulate in the islets of both mice influenced by sex traits.

View Article and Find Full Text PDF

B-cells accumulate in pancreatic islets during the autoimmune response that precedes the onset of type 1 diabetes. However, the role and antigenic specificity of these cells remain a mystery. To elucidate the antigenic repertoire of islet-infiltrating B-cells in type 1 diabetes, we generated hybridoma cell lines of islet-infiltrating B-cells from nonobese diabetic (NOD) mice and NOD mice expressing a diabetogenic T-cell receptor (8.

View Article and Find Full Text PDF

Genetic and environmental factors are decisive in the etiology of type 1 diabetes. Viruses have been proposed as a triggering environmental event and some evidences have been reported: type I IFNs exist in the pancreata of diabetic patients and transgenic mice expressing these cytokines in beta cells develop diabetes. To determine the role of IFNbeta in diabetes, we studied transgenic mice expressing human IFNbeta in the beta cells.

View Article and Find Full Text PDF