Publications by authors named "Joan Selverstone Valentine"

Modern life requires many different metal ions, which enable diverse biochemical functions. It is commonly assumed that metal ions' environmental availabilities controlled the evolution of early life. We argue that evolution can only explore the chemistry that life encounters, and fortuitous chemical interactions between metal ions and biological compounds can only be selected for if they first occur sufficiently frequently.

View Article and Find Full Text PDF

Soluble Mn(III)-L complexes appear to constitute a substantial portion of manganese (Mn) in many environments and serve as critical high-potential species for biogeochemical processes. However, the inherent reactivity and lability of these complexes-the same chemical characteristics that make them uniquely important in biogeochemistry-also make them incredibly difficult to measure. Here we present experimental results demonstrating the limits of common analytical methods used to quantify these complexes.

View Article and Find Full Text PDF

Desert varnish is a dark rock coating that forms in arid environments worldwide. It is highly and selectively enriched in manganese, the mechanism for which has been a long-standing geological mystery. We collected varnish samples from diverse sites across the western United States, examined them in petrographic thin section using microscale chemical imaging techniques, and investigated the associated microbial communities using 16S amplicon and shotgun metagenomic DNA sequencing.

View Article and Find Full Text PDF

Wild-type human SOD1 forms a highly conserved intra-molecular disulfide bond between C57-C146, and in its native state is greatly stabilized by binding one copper and one zinc atom per monomer rendering the protein dimeric. Loss of copper extinguishes dismutase activity and destabilizes the protein, increasing accessibility of the disulfide with monomerization accompanying disulfide reduction. A further pair of free thiols exist at C6 and C111 distant from metal binding sites, raising the question of their function.

View Article and Find Full Text PDF

Looking across our planet's four-and-a-half billion-year history, the rise of dioxygen-an interval sometimes called the Great Oxygenation Event (GOE)-is arguably the most important environmental change. This revolution occurred approximately 2.3 billion years ago, roughly at the mid-way point in Earth history, and it was ultimately driven by a biological innovation: the evolution of oxygenic photosynthesis.

View Article and Find Full Text PDF

Throughout the history of life on Earth, abiotic components of the environment have shaped the evolution of life, and in turn life has shaped the environment. The element manganese embodies a special aspect of this collaboration; its history is closely entwined with those of photosynthesis and O-two reigning features that characterize the biosphere today. Manganese chemistry was central to the environmental context and evolutionary innovations that enabled the origin of oxygenic photosynthesis and the ensuing rise of O.

View Article and Find Full Text PDF

Solvent-accessibility change plays a critical role in protein misfolding and aggregation, the culprit for several neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Mass spectrometry-based hydroxyl radical (·OH) protein footprinting has evolved as a powerful and fast tool in elucidating protein solvent accessibility. In this work, we used fast photochemical oxidation of protein (FPOP) hydroxyl radical (·OH) footprinting to investigate solvent accessibility in human copper-zinc superoxide dismutase (SOD1), misfolded or aggregated forms of which underlie a portion of ALS cases.

View Article and Find Full Text PDF

A mononuclear side-on peroxocobalt(III) complex with a tetradentate macrocyclic ligand, [Co(TBDAP)(O)] (1), shows a novel and facile mode of dioxygenase-like reactivity with nitriles (R-C≡N; R = Me, Et, and Ph) to produce the corresponding mononuclear hydroximatocobalt(III) complexes, [Co(TBDAP)(R-C(═NO)O)], in which the nitrile moiety is oxidized by two oxygen atoms of the peroxo group. The overall reaction proceeds in one-pot under ambient conditions (ca. 1 h, 40 °C).

View Article and Find Full Text PDF

A common property of Cu/Zn superoxide dismutase 1 (SOD1), harboring mutations associated with amyotrophic lateral sclerosis, is a high propensity to misfold and form abnormal aggregates. The aggregation of mutant SOD1 has been demonstrated in vitro, with purified proteins, in mouse models, in human tissues, and in cultured cell models. In vitro translation studies have determined that SOD1 with amyotrophic lateral sclerosis mutations is slower to mature, and thus perhaps vulnerable to off-pathway folding that could generate aggregates.

View Article and Find Full Text PDF

Life on Earth originated and evolved in anoxic environments. Around 2.4 billion-years-ago, ancestors of Cyanobacteria invented oxygenic photosynthesis, producing substantial amounts of O2 as a byproduct of phototrophic water oxidation.

View Article and Find Full Text PDF

Aggregation of copper-zinc superoxide dismutase (SOD1) is a defining feature of familial ALS caused by inherited mutations in the sod1 gene, and misfolded and aggregated forms of wild-type SOD1 are found in both sporadic and familial ALS cases. Mature SOD1 owes its exceptional stability to a number of post-translational modifications as follows: formation of the intramolecular disulfide bond, binding of copper and zinc, and dimerization. Loss of stability due to the failure to acquire one or more of these modifications is proposed to lead to aggregation in vivo.

View Article and Find Full Text PDF

The functional and structural significance of the intrasubunit disulfide bond in copper-zinc superoxide dismutase (SOD1) was studied by characterizing mutant forms of human SOD1 (hSOD) and yeast SOD1 lacking the disulfide bond. We determined x-ray crystal structures of metal-bound and metal-deficient hC57S SOD1. C57S hSOD1 isolated from yeast contained four zinc ions per protein dimer and was structurally very similar to wild type.

View Article and Find Full Text PDF

The dimeric Cu-Zn superoxide dismutase (SOD1) is a particularly interesting system for biological inorganic chemical studies because substitutions of the native Cu and/or Zn ions by a nonnative metal ion cause minimal structural changes and result in high enzymatic activity for those derivatives with Cu remaining in the Cu site. The pioneering NMR studies of the magnetically coupled derivative Cu2Co2SOD1 by Ivano Bertini and coworkers are of particular importance in this regard. In addition to Co(2+), Ni(2+) is a versatile metal ion for substitution into SOD1, showing very little disturbance of the structure in Cu2Ni2SOD1 and acting as a very good mimic of the native Cu ion in Ni2Zn2SOD1.

View Article and Find Full Text PDF

Copper-zinc superoxide dismutase (Sod1) is an abundant intracellular enzyme that catalyzes the disproportionation of superoxide to give hydrogen peroxide and dioxygen. In most organisms, Sod1 acquires copper by a combination of two pathways, one dependent on the copper chaperone for Sod1 (CCS), and the other independent of CCS. Examples have been reported of two exceptions: Saccharomyces cerevisiae, in which Sod1 appeared to be fully dependent on CCS, and Caenorhabditis elegans, in which Sod1 was completely independent of CCS.

View Article and Find Full Text PDF

Abnormal assemblies formed by misfolded superoxide dismutase-1 (SOD1) proteins are the likely cause of SOD1-linked familial amyotrophic lateral sclerosis (fALS) and may be involved in some cases of sporadic ALS. To analyze the structure of the insoluble SOD1 amyloid fibrils, we first used limited proteolysis followed by mass spectrometric analysis. Digestion of amyloid fibrils formed from full-length N-acetylated WT SOD1 with trypsin, chymotrypsin, or Pronase revealed that the first 63 residues of the N terminus were protected from protease digestion by fibril formation.

View Article and Find Full Text PDF

Two yeast manganese superoxide dismutases (MnSOD), one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), have most biochemical and biophysical properties in common, yet ScMnSOD is a tetramer and CaMnSODc is a dimer or "loose tetramer" in solution. Although CaMnSODc was found to crystallize as a tetramer, there is no indication from the solution properties that the functionality of CaMnSODc in vivo depends upon the formation of the tetrameric structure. To elucidate further the functional significance of MnSOD quaternary structure, wild-type and mutant forms of ScMnSOD (K182R, A183P mutant) and CaMnSODc (K184R, L185P mutant) with the substitutions at dimer interfaces were analyzed with respect to their oligomeric states and resistance to pH, heat, and denaturant.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the death of motor neurons. About 10% of ALS cases are inherited (familial), and a large subset of them are caused by mutations in the gene encoding the copper-zinc superoxide dismutase (SOD1). The detection of SOD1-positive inclusions in familial ALS patients suggests the role of SOD1 aggregation underlying the pathology of familial ALS.

View Article and Find Full Text PDF

Reduction of superoxide (O2-) by manganese-containing superoxide dismutase occurs through either a "prompt protonation" pathway, or an "inner-sphere" pathway, with the latter leading to formation of an observable Mn-peroxo complex. We recently reported that wild-type (WT) manganese superoxide dismutases (MnSODs) from Saccharomyces cerevisiae and Candida albicans are more gated toward the "prompt protonation" pathway than human and bacterial MnSODs and suggested that this could result from small structural changes in the second coordination sphere of manganese. We report here that substitution of a second-sphere residue, Tyr34, by phenylalanine (Y34F) causes the MnSOD from S.

View Article and Find Full Text PDF

Nonenzymatic manganese was first shown to provide protection against superoxide toxicity in vivo in 1981, but the chemical mechanism responsible for this protection subsequently became controversial due to conflicting reports concerning the ability of Mn to catalyze superoxide disproportionation in vitro. In a recent communication, we reported that low concentrations of a simple Mn phosphate salt under physiologically relevant conditions will indeed catalyze superoxide disproportionation in vitro. We report now that two of the four Mn complexes that are expected to be most abundant in vivo, Mn phosphate and Mn carbonate, can catalyze superoxide disproportionation at physiologically relevant concentrations and pH, whereas Mn pyrophosphate and citrate complexes cannot.

View Article and Find Full Text PDF

Human MnSOD is significantly more product-inhibited than bacterial MnSODs at high concentrations of superoxide (O(2)(-)). This behavior limits the amount of H(2)O(2) produced at high [O(2)(-)]; its desirability can be explained by the multiple roles of H(2)O(2) in mammalian cells, particularly its role in signaling. To investigate the mechanism of product inhibition in MnSOD, two yeast MnSODs, one from Saccharomyces cerevisiae mitochondria (ScMnSOD) and the other from Candida albicans cytosol (CaMnSODc), were isolated and characterized.

View Article and Find Full Text PDF

Oxygen-containing mononuclear iron species--iron(III)-peroxo, iron(III)-hydroperoxo and iron(IV)-oxo--are key intermediates in the catalytic activation of dioxygen by iron-containing metalloenzymes. It has been difficult to generate synthetic analogues of these three active iron-oxygen species in identical host complexes, which is necessary to elucidate changes to the structure of the iron centre during catalysis and the factors that control their chemical reactivities with substrates. Here we report the high-resolution crystal structure of a mononuclear non-haem side-on iron(III)-peroxo complex, [Fe(III)(TMC)(OO)](+).

View Article and Find Full Text PDF

Mutations in the metalloenzyme copper-zinc superoxide dismutase (SOD1) cause one form of familial amyotrophic lateral sclerosis (ALS), and metals are suspected to play a pivotal role in ALS pathology. To learn more about metals in ALS, we determined the metallation states of human wild-type or mutant (G37R, G93A, and H46R/H48Q) SOD1 proteins from SOD1-ALS transgenic mice spinal cords. SOD1 was gently extracted from spinal cord and separated into insoluble (aggregated) and soluble (supernatant) fractions, and then metallation states were determined by HPLC inductively coupled plasma MS.

View Article and Find Full Text PDF

Mn(IV)-peroxo and Mn(V)-oxo corroles were synthesized and characterized with various spectroscopic techniques. The intermediates were directly used in O-O bond cleavage and formation reactions. Upon addition of proton to the Mn(IV)-peroxo corrole, the formation of the Mn(V)-oxo corrole was observed.

View Article and Find Full Text PDF

Manganese superoxide dismutase (MnSOD) from different species differs in its efficiency in removing high concentrations of superoxide (O(2)(-)), due to different levels of product inhibition. Human MnSOD exhibits a substantially higher level of product inhibition than the MnSODs from bacteria. In order to investigate the mechanism of product inhibition and whether it is a feature common to eukaryotic MnSODs, we purified MnSOD from Saccharomyces cerevisiae (ScMnSOD).

View Article and Find Full Text PDF