Publications by authors named "Joan Rose"

Context.—: Biomedical research relies on available biomaterials and associated data, and the quality of this starting material can have a significant impact on the quality of the experimental results. In the 2000s, best-practice documents and guidelines for biorepositories were published, followed in the 2010s by standards documents used to support accreditation.

View Article and Find Full Text PDF

The global SARS-CoV-2 monitoring effort has been extensive, resulting in many states and countries establishing wastewater-based epidemiology programs to address the spread of the virus during the pandemic. Challenges for programs include concurrently optimizing methods, training new laboratories, and implementing successful surveillance programs that can rapidly translate results for public health, and policy making. Surveillance in Michigan early in the pandemic in 2020 highlights the importance of quality-controlled data and explores correlations with wastewater and clinical case data aggregated at the state level.

View Article and Find Full Text PDF

Drinking water distribution systems are increasingly vulnerable to sewage intrusion due to aging water infrastructure and intensifying water stress. While the health risks associated with sewage intrusion have been extensively studied, little is known about the impacts of intruded bacteria and dissolved organic matter (DOM) on microbiology in drinking water. In this dynamic study, we demonstrate that the intrusion of 1 % sewage into tap water resulted in immediate contamination, including an 8-fold increase in biomass (TCC), a 48.

View Article and Find Full Text PDF

Pathogenic viruses in environmental water are usually present in levels too low for direct detection and thus, a concentration step is often required to increase the analytical sensitivity. The objective of this study was to evaluate an automated filtration device, the Innovaprep Concentrating Pipette Select (CP Select) for the rapid concentration of viruses in saline water samples, while considering duration of process and ease of use. Four bacteriophages (MS2, P22, Phi6, and PhiX174) and three animal viruses (adenovirus, coronavirus OC43, and canine distemper virus) were seeded in artificial seawater, aquarium water, and bay water samples, and processed using the CP Select.

View Article and Find Full Text PDF
Article Synopsis
  • - The COVID-19 pandemic emphasized the importance of using quantitative microbial risk assessment (QMRA) for enhancing public health protection through modeling infectious disease risks.
  • - A recent workshop gathered 41 QMRA experts to outline crucial research priorities such as improving methods, harmonizing environmental monitoring, and integrating different scientific approaches.
  • - Key recommendations include building a collaborative research community, enhancing data collection efforts, and ensuring sustainable funding to support the advancement of QMRA for global health policies.
View Article and Find Full Text PDF

Quantitative polymerase chain reaction (PCR) and genome sequencing are important methods for wastewater surveillance of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The reverse transcription-droplet digital PCR (RT-ddPCR) is a highly sensitive method for quantifying SARS-CoV-2 RNA in wastewater samples to track the trends of viral activity levels but cannot identify new variants. It also takes time to develop new PCR-based assays targeting variants of interest.

View Article and Find Full Text PDF

Although simulated studies have provided valuable knowledge regarding the communities of planktonic bacteria and biofilms, the lack of systematic field studies have hampered the understanding of microbiology in real-world service lines and premise plumbing. In this study, the bacterial communities of water and biofilm were explored, with a special focus on the lifetime development of biofilm communities and their key influencing factors. The 16S rRNA gene sequencing results showed that both the planktonic bacteria and biofilm were dominated by Proteobacteria.

View Article and Find Full Text PDF

Water reuse is rapidly becoming an integral feature of resilient water systems, where municipal wastewater undergoes advanced treatment, typically involving a sequence of ultrafiltration (UF), reverse osmosis (RO), and an advanced oxidation process (AOP). When RO is used, a concentrated waste stream is produced that is elevated in not only total dissolved solids but also metals, nutrients, and micropollutants that have passed through conventional wastewater treatment. Management of this RO concentrate─dubbed municipal wastewater reuse concentrate (MWRC)─will be critical to address, especially as water reuse practices become more widespread.

View Article and Find Full Text PDF
Article Synopsis
  • The original publication discusses the key themes and findings of a specific topic, providing valuable insights and evidence.
  • It highlights the implications and potential impact of the research on future studies or practical applications.
  • The document also addresses any limitations or areas for further investigation, encouraging ongoing exploration in the field.*
View Article and Find Full Text PDF

During the COVID-19 pandemic, wastewater-based surveillance has been shown to be a useful tool for monitoring the spread of disease in communities and the emergence of new viral variants of concern. As the pandemic enters its fourth year and clinical testing has declined, wastewater offers a consistent non-intrusive way to monitor community health in the long term. This study sought to understand how accurately wastewater monitoring represented the actual burden of disease between communities.

View Article and Find Full Text PDF

A year since the declaration of the global coronavirus disease 2019 (COVID-19) pandemic, there were over 110 million cases and 2.5 million deaths. Learning from methods to track community spread of other viruses such as poliovirus, environmental virologists and those in the wastewater-based epidemiology (WBE) field quickly adapted their existing methods to detect SARS-CoV-2 RNA in wastewater.

View Article and Find Full Text PDF

Surveillance of antibiotic resistance genes (ARGs) has been increasingly conducted in environmental sectors to complement the surveys in human and animal sectors under the "One-Health" framework. However, there are substantial challenges in comparing and synthesizing the results of multiple studies that employ different test methods and approaches in bioinformatic analysis. In this article, we consider the commonly used quantification units (ARG copy per cell, ARG copy per genome, ARG density, ARG copy per 16S rRNA gene, RPKM, coverage, PPM, etc.

View Article and Find Full Text PDF

The impacts of nucleic acid-based methods - such as PCR and sequencing - to detect and analyze indicators, genetic markers or molecular signatures of microbial faecal pollution in health-related water quality research were assessed by rigorous literature analysis. A wide range of application areas and study designs has been identified since the first application more than 30 years ago (>1100 publications). Given the consistency of methods and assessment types, we suggest defining this emerging part of science as a new discipline: genetic faecal pollution diagnostics (GFPD) in health-related microbial water quality analysis.

View Article and Find Full Text PDF

Premise plumbing plays an essential role in determining the final quality of drinking water consumed by customers. However, little is known about the influences of plumbing configuration on water quality changes. This study selected parallel premise plumbing in the same building with different configurations, i.

View Article and Find Full Text PDF

The safe management of fecal sludge from the 3.4 billion people worldwide that use onsite sanitation systems can greatly reduce the global infectious disease burden. However, there is limited knowledge about the role of design, operational, and environmental factors on pathogen survival in pit latrines, urine diverting desiccation toilets, and other types of onsite toilets.

View Article and Find Full Text PDF

Wastewater-based epidemiology has been recognized as a tool to monitor the progress of COVID-19 pandemic worldwide. The study presented herein aimed at quantitating the SARS-CoV-2 RNA in the wastewaters, predicting the number of infected individuals in the catchment areas, and correlating it with the clinically reported COVID-19 cases. Wastewater samples (n = 162) from different treatment stages were collected from three wastewater treatment plants (WWTPs) from Mumbai city during the 2nd surge of COVID-19 (April 2021 to June 2021).

View Article and Find Full Text PDF

infects approximately 50% of the world's population and is considered the major etiological agent of severe gastric diseases, such as peptic ulcers and gastric carcinoma. Increasing resistance to standard antibiotics has now led to an ever-decreasing efficacy of eradication therapies and the development of novel and improved regimens for treatment is urgently required. Substantial progress has been made over the past few years in the identification of molecular mechanisms which are conducive to resistant phenotypes as well as for efficient strategies to counteract strain resistance and to avoid the use of ineffective antibiotics.

View Article and Find Full Text PDF

Wastewater-based epidemiology (WBE) has gained increasing attention as a complementary tool to conventional surveillance methods with potential for significant resource and labour savings when used for public health monitoring. Using WBE datasets to train machine learning algorithms and develop predictive models may also facilitate early warnings for the spread of outbreaks. The challenges associated with using machine learning for the analysis of WBE datasets and timeseries forecasting of COVID-19 were explored by running Random Forest (RF) algorithms on WBE datasets across 108 sites in five regions: Scotland, Catalonia, Ohio, the Netherlands, and Switzerland.

View Article and Find Full Text PDF

Surface water quality quantitative polymerase chain reaction (qPCR) technologies are expanding from a subject of research to routine environmental and public health laboratory testing. Readily available, reliable reference material is needed to interpret qPCR measurements, particularly across laboratories. Standard Reference Material® 2917 (NIST SRM® 2917) is a DNA plasmid construct that functions with multiple water quality qPCR assays allowing for estimation of total fecal pollution and identification of key fecal sources.

View Article and Find Full Text PDF

The study goal was to better understand the risks of elevated copper levels at US schools and childcare centers. Copper health effects, chemistry, occurrence, and remediation actions were reviewed. Of the more than 98,000 schools and 500,000 childcare centers, only 0.

View Article and Find Full Text PDF

Despite the widely acknowledged public health impacts of surface water fecal contamination, there is limited understanding of seasonal effects on (i) fate and transport processes and (ii) the mechanisms by which they contribute to water quality impairment. Quantifying relationships between land use, chemical parameters, and fecal bacterial concentrations in watersheds can help guide the monitoring and control of microbial water quality and explain seasonal differences. The goals of this study were to (i) identify seasonal differences in Escherichia coli and Bacteroides thetaiotaomicron concentrations, (ii) evaluate environmental drivers influencing microbial contamination during baseflow, snowmelt, and summer rain seasons, and (iii) relate seasonal changes in B.

View Article and Find Full Text PDF

Climate change is already impacting the North American Great Lakes ecosystem and understanding the relationship between climate events and public health, such as waterborne acute gastrointestinal illnesses (AGIs), can help inform needed adaptive capacity for drinking water systems (DWSs). In this study, we assessed a harmonized binational dataset for the effects of extreme precipitation events (≥90th percentile) and preceding dry periods, source water turbidity, total coliforms, and protozoan AGIs - cryptosporidiosis and giardiasis - in the populations served by four DWSs that source surface water from Lake Ontario (Hamilton and Toronto, Ontario, Canada) and Lake Michigan (Green Bay and Milwaukee, Wisconsin, USA) from January 2009 through August 2014. We used distributed lag non-linear Poisson regression models adjusted for seasonality and found extreme precipitation weeks preceded by dry periods increased the relative risk of protozoan AGI after 1 and 3-5 weeks in three of the four cities, although only statistically significant in two.

View Article and Find Full Text PDF

As non-point sources of pollution begin to overtake point sources in watersheds, source identification and complicating variables such as rainfall are growing in importance. Microbial source tracking (MST) allows for identification of fecal contamination sources in watersheds; when combined with data on land use and co-occuring variables (e.g.

View Article and Find Full Text PDF

In this study, droplet digital PCR (ddPCR) was used to characterize total spp. and five specific species from source (groundwater) to exposure sites (taps and cooling towers). A total of 42-10 L volume water samples were analyzed during this study: 12 from a reservoir (untreated groundwater and treated water storage tanks), 24 from two buildings (influents and taps), and six from cooling towers, all part of the same water system.

View Article and Find Full Text PDF

Pathogenic species grow optimally inside free-living amoebae to concentrations that increase risks to those who are exposed. The aim of this study was to screen a complete drinking water system and cooling towers for the occurrence of spp. and and their cooccurrence with , , , , and .

View Article and Find Full Text PDF