Bridges are vital components of transport infrastructures, and therefore, it is of utmost importance that they operate safely and reliably. This paper proposes and tests a methodology for detecting and localizing damage in bridges under both traffic and environmental variability considering non-stationary vehicle-bridge interaction. In detail, the current study presents an approach to temperature removal in the case of forced vibrations in the bridge using principal component analysis, with detection and localization of damage using an unsupervised machine learning algorithm.
View Article and Find Full Text PDFA hybrid girder bridge adopts a steel segment at the mid-span of the main span of a continuous concrete girder bridge. The critical point of the hybrid solution is the transition zone, connecting the steel and concrete segments of the beam. Although many girder tests revealing the structural behavior of hybrid girders have been conducted by previous studies, few specimens took the full section of a steel-concrete joint due to the large size of prototype hybrid bridges.
View Article and Find Full Text PDFDistributed fiber optic sensors (DFOS) can detect structural cracks and structural deformation with high accuracy and wide measurement range. This study monitors the segmental prestressed bent cap, assembled with a large key dry joint, based on optical fiber technology, and it allows the comparison of its damaging process with that of a monolithic cast in place counterpart. The obtained results, comprising cross-section strain distributions, longitudinal strain profiles, neutral axis location, crack pattern, and the damage process, show that the DFOS technology can be successfully used to analyze the complex working stress state of the segmental beam with shear key joints, both in the elastic range and at the ultimate load, and to successfully identify the changing characteristics of the stress state of the segmental capping beam model when elastic beam theory no longer applies.
View Article and Find Full Text PDFWe live in an environment of ever-growing demand for transport networks, which also have ageing infrastructure. However, it is not feasible to replace all the infrastructural assets that have surpassed their service lives. The commonly established alternative is increasing their durability by means of Structural Health Monitoring (SHM)-based maintenance and serviceability.
View Article and Find Full Text PDFThe inverse problem of structural system identification is prone to ill-conditioning issues; thus, uniqueness and stability cannot be guaranteed. This issue tends to amplify the error propagation of both the epistemic and aleatory uncertainties, where aleatory uncertainty is related to the accuracy and the quality of sensors. The analysis of uncertainty quantification (UQ) is necessary to assess the effect of uncertainties on the estimated parameters.
View Article and Find Full Text PDFThe present work is a comprehensive collection of recently published research articles on Structural Health Monitoring (SHM) campaigns performed by means of Distributed Optical Fiber Sensors (DOFS). The latter are cutting-edge strain, temperature and vibration monitoring tools with a large potential pool, namely their minimal intrusiveness, accuracy, ease of deployment and more. Its most state-of-the-art feature, though, is the ability to perform measurements with very small spatial resolutions (as small as 0.
View Article and Find Full Text PDFDistributed optical fiber sensors (DOFS) are modern-day cutting-edge monitoring tools that are quickly acquiring relevance in structural health monitoring engineering. Their most ambitious use is embedded inside plain or reinforced concrete (RC) structures with the scope of comprehending their inner-workings and the functioning of the concrete-reinforcement interaction. Yet, multiple studies have shown that the bonding technique with which the DOFS are bonded to the reinforcement bars has a significant role on the quality of the extracted strain data.
View Article and Find Full Text PDFDistributed Optical Fiber Sensors (DOFSs), thanks to their multiple sensing points, are ideal tools for the detection of deformations and cracking in reinforced concrete (RC) structures, crucial as a means to ensure the safety of infrastructures. Yet, beyond a certain point of most DOFS-monitored experimental tests, researchers have come across unrealistic readings of strain which prevent the extraction of further reliable data. The present paper outlines the results obtained through an experimental test aimed at inducing such anomalies to isolate and identify the physical cause of their origin.
View Article and Find Full Text PDFWhen using distributed optical fiber sensors (DOFS) on reinforced concrete structures, a compromise must be achieved between the protection requirements and robustness of the sensor deployment and the accuracy of the measurements both in the uncracked and cracked stages and under loading, unloading and reloading processes. With this in mind the authors have carried out an experiment where polyimide-coated DOFS were installed on two concrete beams, both embedded in the rebar elements and also bonded to the concrete surface. The specimens were subjected to a three-point load test where after cracking, they are unloaded and reloaded again to assess the capability of the sensor when applied to a real loading scenarios in concrete structures.
View Article and Find Full Text PDFThe application of structural health monitoring (SHM) systems to civil engineering structures has been a developing studied and practiced topic, that has allowed for a better understanding of structures' conditions and increasingly lead to a more cost-effective management of those infrastructures. In this field, the use of fiber optic sensors has been studied, discussed and practiced with encouraging results. The possibility of understanding and monitor the distributed behavior of extensive stretches of critical structures it's an enormous advantage that distributed fiber optic sensing provides to SHM systems.
View Article and Find Full Text PDF