Publications by authors named "Joan Oppenheimer"

Irrigation with reclaimed water alleviates water supply shortages, but excess application often results in impairment of contiguous waterbodies. This project investigated the potential use of iohexol, an iodinated contrast media used in medical imaging, together with its bio- and phototransformation products as unique reconnaissance markers of reclaimed water irrigation intrusion at three golf courses within the state of Florida. Inter-facility iohexol concentrations measured in reclaimed waters ranged over ~2 orders of magnitude while observed intra-facility seasonal differences were ≤1 order of magnitude.

View Article and Find Full Text PDF

Widespread contamination of groundwater with per- and polyfluoroalkyl substances (PFAS) has required drinking water producers to quickly adopt practical and efficacious treatments to limit human exposure and deleterious health outcomes. This pilot-scale study comparatively investigated PFAS adsorption behaviors in granular activated carbon (GAC) and two strong-base gel anion exchange resin (AER) columns operated in parallel over a 441-day period to treat contaminated groundwater dominated by short-chain perfluorocarboxylic acids (PFCA). Highly-resolved breakthrough profiles of homologous series of 2-8 CF PFCA and perfluorosulfonic acids (PFSA), including ultrashort-chain compounds and branched isomers, were measured to elucidate adsorption trends.

View Article and Find Full Text PDF

Granular activated carbon (GAC) has proven to be a successful technology for per- and polyfluoroalkyl substances (PFAS) removal from contaminated drinking water supplies. Proper design of GAC treatment relies upon characterization of media service-life, which can change significantly depending on the PFAS contamination, treatment media, and water quality, and is often determined by fitting descriptive models to breakthrough curves. However, while common descriptive breakthrough models are favored for their ease-of-use, they have a significant shortcoming in that they are not able to properly fit PFAS desorption in competitive sorption scenarios.

View Article and Find Full Text PDF

Holistic management of water and energy resources is critical for water utilities facing increasing energy prices, water supply shortage and stringent regulatory requirements. In the early 1990s, the concept of an integrated Energy and Water Quality Management System (EWQMS) was developed as an operational optimization framework for solving water quality, water supply and energy management problems simultaneously. Approximately twenty water utilities have implemented an EWQMS by interfacing commercial or in-house software optimization programs with existing control systems.

View Article and Find Full Text PDF

Membrane bioreactors (MBRs) produce better quality effluent compared to conventional treatment processes but they are still subjected to the same disinfection requirements as conventional processes by many regulatory agencies. A research study consisting of bench-, pilot- and full-scale studies was conducted to characterize effluents produced from an MBR system operating under routine and challenged conditions and to assess the disinfection requirements for these effluents. Membrane cleaning did not seem to pose a substantial risk with respect to passage of target microorganisms; however, the membrane under breached conditions (turbidity > 0.

View Article and Find Full Text PDF

Nitrogen and phosphorous loading into waterways from designated beneficial uses of reclaimed water is a growing concern in many parts of the United States. Numerous studies have documented that organic microconstituents present in the reclaimed water can be utilized as indicators of its influence on surface water bodies. However, little to no information is available on the environmental attenuation of these microconstituents relative to the nutrients, which is a critical component in determining the effectiveness or limitations of those markers as a tool for elucidating their origins.

View Article and Find Full Text PDF

Membrane bioreactors (MBRs) are often a preferred treatment technology for satellite water recycling facilities since they produce consistent effluent water quality with a small footprint and require little or no supervision. While the water quality produced from centralized MBRs has been widely reported, there is no study in the literature addressing the effluent quality from a broad range of satellite facilities. Thus, a study was conducted to characterize effluent water qualities produced by satellite MBRs with respect to organic, inorganic, physical and microbial parameters.

View Article and Find Full Text PDF

Previous studies have suggested the use of sucralose, a synthetic non-nutritive sweetener, as an indicator of domestic wastewater loading to surface waters. This paper presents a novel flow schematic approach for quantifying volumetric load contributions from different water sources by utilizing sucralose as a master diagnostic variable in combination with other trace compounds. This conceptual approach was validated through demonstration of sucralose presence at positive field sites susceptible to either water reuse or septic infiltration and its absence at negative field sites.

View Article and Find Full Text PDF

The promulgation of numeric nutrient criteria for evaluating impairment of waterbodies in Florida is underway. Adherence to the water quality standards needed to meet these criteria will potentially require substantial allocations of public and private resources in order to better control nutrient (i.e.

View Article and Find Full Text PDF

Urban watersheds are susceptible to numerous pollutant sources and the identification of source-specific indicators can provide a beneficial tool in the identification and control of input loads, often times needed for a water body to achieve designated beneficial uses. Differentiation of wastewater flows from other urban wet weather flows is needed in order to more adequately address such environmental concerns as water body nutrient impairment and potable source water contamination. Anthropogenic compounds previously suggested as potential wastewater indicators include caffeine, carbamazepine, N,N-diethyl-meta-toluamide (DEET), gemfibrozil, primidone, sulfamethoxazole, and TCEP.

View Article and Find Full Text PDF

Energy is a significant cost in the economics of desalinating waters, but water scarcity is driving the rapid expansion in global installed capacity of desalination facilities. Conventional fossil fuels have been utilized as their main energy source, but recent concerns over greenhouse gas (GHG) emissions have promoted global development and implementation of energy minimization strategies and cleaner energy supplies. In this paper, a comprehensive review of energy minimization strategies for membrane-based desalination processes and utilization of lower GHG emission renewable energy resources is presented.

View Article and Find Full Text PDF

Wastewater treatment facilities use secondary treatment to stabilize the effect of discharged effluent on receiving waters by oxidizing biodegradable organic matter and reducing suspended solids and nutrients. The process was never specifically intended to remove trace quantities of xenobiotics, such as endocrine-disrupting compounds (EDCs) and pharmaceuticals and personal care products (PPCPs). Nevertheless, European studies performed at bench-scale or at small facilities have demonstrated that a critical minimum solids retention time (SRT) can achieve good reduction of many EDCs and pharmaceuticals.

View Article and Find Full Text PDF

Phosphorus (P) discharge to surface water is a major environmental problem. Wastewater treatment is targeted towards removal of this nutrient to prevent degradation of surface water. Integrated membrane systems (IMS) are increasingly being considered for wastewater reclamation, and provide excellent removal of P compounds.

View Article and Find Full Text PDF