Publications by authors named "Joan M Keutzer"

Exposure to acute, high-dose, whole-body ionizing radiation results in bone marrow failure (hematopoietic acute radiation syndrome with resultant infection, bleeding, anemia, and increased risk of death). Sargramostim (yeast-derived rhu GM-CSF), a yeast-derived, molecularly cloned, hematopoietic growth factor and pleiotropic cytokine supports proliferation, differentiation, maturation and survival of cells of several myeloid lineages. We evaluated the efficacy of sargramostim in non-human primates (rhesus macaques) exposed to whole-body ionizing radiation at a 50-60% lethal dose.

View Article and Find Full Text PDF

When clinical trials for enzyme replacement therapy for Pompe disease commenced, a need for newborn screening (NBS) for Pompe disease was recognized. Two methods for NBS for Pompe disease by measuring acid α-glucosidase in dried blood spots on filter paper were developed in an international collaborative research effort led by Genzyme. Both methods were used successfully in NBS pilot programs to demonstrate the feasibility of NBS for Pompe disease.

View Article and Find Full Text PDF

Deficiency of β-Glucocerebrosidase (GBA) activity causes Gaucher Disease (GD). GD can be diagnosed by measuring GBA activity (Beutler and Kuhl, 1990). In this study, we assayed dried blood spots from a cohort (n=528) enriched for GBA mutation carriers (n=78) and GD patients (n=18) using both the tandem mass spectrometry (MS/MS) and fluorescence assays and their respective synthetic substrates.

View Article and Find Full Text PDF

Background: New York State has screened over 1.2 million newborns for Krabbe disease, and we identified 4 newborns with infantile Krabbe disease. In addition, 6 other newborns were identified with very low galactosylcerebrosidase (GALC) activity.

View Article and Find Full Text PDF

Background: Fluorometric and tandem mass spectrometry assays can be used to measure lysosomal enzyme activities in dried blood spots (DBS). The effect of DBS preparation, storage and shipping was evaluated on the activities of acid α-glucosidase, acid α-galactosidase, acid β-glucocerebrosidase, acid sphingomyelinase, and galactocerebrosidase.

Methods: Whole blood from normal donors was used to prepare DBS following Clinical and Laboratory Standards Institute guidelines and by several deviations.

View Article and Find Full Text PDF

Background: Fabry disease is characterized by accumulation of glycosphingolipids, such as globotriaosylceramide (Gb(3)), in many tissues and body fluids. A novel plasma biomarker, globotriaosylsphingosine (lyso-Gb(3)), is increased in patients with the disease. Until now, lyso-Gb(3) was not detectable in urine, possibly because of the presence of interfering compounds.

View Article and Find Full Text PDF

Deficiencies in any of the 50 degradative enzymes found in lysosomes results in the accumulation of undegraded material and subsequently cellular dysfunction. Early identification of deficiencies before irreversible organ and tissue damages occur leads to better clinical outcomes. In the method which follows, lysosomal alpha-glucosidase, alpha-galactosidase, beta-glucocerebrosidase, acid sphingomyelinase, and galactocerebrosidase are extracted from dried blood spots and incubated individually with an enzyme-specific cocktail containing the corresponding substrate and internal standard.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a modified multiplex enzyme assay for screening newborns for lysosomal storage disorders like Pompe and Fabry diseases.
  • The assay was optimized for high-throughput use, improving enzyme activity measurements and simplifying preparation with premixed components.
  • Validation showed that this new method can effectively differentiate between healthy individuals and those with lysosomal storage disorders, making it suitable for large-scale screening.
View Article and Find Full Text PDF