Biol Psychiatry Cogn Neurosci Neuroimaging
March 2017
Background: Despite our understanding of the significance of the prefrontal cortex in the consolidation of long-term memories (LTM), its role in the encoding of LTM remains elusive. Here we investigated the role of new protein synthesis in the mouse medial prefrontal cortex (mPFC) in encoding contextual fear memory.
Methods: Because a change in the association of mRNAs to polyribosomes is an indicator of new protein synthesis, we assessed the changes in polyribosome-associated mRNAs in the mPFC following contextual fear conditioning (CFC) in the mouse.
Recognition of a previously experienced item or object depends upon the successful retrieval of memory for the object. The neural mechanisms that support object recognition memory in the mammalian brain are not well understood. The rodent hippocampus plays a well-established role in spatial memory, and we previously demonstrated that temporary inactivation of the mouse hippocampus impairs object memory, as assessed with a novel object preference (NOP) test.
View Article and Find Full Text PDFRecent findings indicate that rats navigate in spatial tasks such as the Morris water maze (MWM) using a local cue-based reference frame rather than a distal cue-based reference frame. Specifically, rats swim in a particular direction to a location relative to pool-based cues, rather than to an absolute location defined by room-based cues. Neural mechanisms supporting this bias in rodents for relative responding in spatial tasks are not yet understood.
View Article and Find Full Text PDF