Reverse development, or the ability to rejuvenate by morphological reorganization into the preceding life cycle stage is thought to be restricted to a few species within Cnidaria. To date, is the only known species capable of undergoing reverse development after the onset of sexual reproduction. Here, we demonstrate that the ctenophore is capable of reversal from mature lobate to early cydippid when fed following a period of stress.
View Article and Find Full Text PDFCtenophores are marine organisms attracting significant attention from evolutionary biology, molecular biology, and ecological research. Here, we describe an easy and affordable setup to maintain a stable culture of the ctenophore Mnemiopsis leidyi. The challenging delicacy of the lobate ctenophores can be met by monitoring the water quality, providing the right nutrition, and adapting the handling and tank set-up to their fragile gelatinous body plan.
View Article and Find Full Text PDFA fundamental breakthrough in neurobiology has been the formulation of the neuron doctrine by Santiago Ramón y Cajal, which stated that the nervous system is composed of discrete cells. Electron microscopy later confirmed the doctrine and allowed the identification of synaptic connections. In this work, we used volume electron microscopy and three-dimensional reconstructions to characterize the nerve net of a ctenophore, a marine invertebrate that belongs to one of the earliest-branching animal lineages.
View Article and Find Full Text PDFKnowledge of life histories is crucial for understanding ecological and evolutionary processes, but for many hydrozoan species only incomplete life cycles have been described due to challenges in linking hydromedusae with their polyp stages. Using a combination of DNA barcoding, morphology, and ecological information, we describe for the first time the polyp stage of Agassiz, 1865 and re-describe that of (Romanes, 1876). Campanulinid hydroids referable to Sars, 1874 and collected in the same biogeographic region as the type locality of this species are shown to be the polyp stage of these two mitrocomid hydromedusae.
View Article and Find Full Text PDFCtenophores are gelatinous marine animals famous for locomotion by ciliary combs. Due to the uncertainties of the phylogenetic placement of ctenophores and the absence of some key bilaterian neuronal genes, it has been hypothesized that their neurons evolved independently. Additionally, recent whole-body, single-cell RNA sequencing (scRNA-seq) analysis failed to identify ctenophore neurons using any of the known neuronal molecular markers.
View Article and Find Full Text PDFHydrozoans are a conspicuous component of Antarctic benthic communitites. Recent taxonomic effort has led to a substantial increase in knowledge on the diversity of benthic hydroids from some areas of the Southern Ocean, including the Weddell Sea, the largest sea in the Antarctic region. However, the study of many hydrozoan taxa are still pending, and the diversity in this huge region is expected to be higher than currently known.
View Article and Find Full Text PDF