The present study tested the hypothesis that morphine exposure during the human developmental equivalent of the third trimester would alter inflammatory pain. This study examined whether acute or continuous opioid exposure in the neonatal rat alters formalin-induced nociception after 4 days of abstinence. Rats were exposed to a single acute administration of morphine on postnatal day 7 or 72 h of opioid infusion from postnatal days 5-7 via osmotic pump.
View Article and Find Full Text PDFUnlabelled: Ethanol (EtOH) withdrawal increases sensitivity to painful stimuli in adult rats. In this study, withdrawal from a single, acute administration of EtOH dose-dependently produced mechanical allodynia and thermal hyperalgesia in postnatal day 7 (P7) rats. In contrast, P21 rats exhibited earlier and more prolonged mechanical allodynia but not thermal hyperalgesia.
View Article and Find Full Text PDFWe performed experiments in spinal cords isolated from neonatal rats to probe the mechanisms responsible for hyperresponsiveness of the population excitatory evoked potential (pEPSP) observed on washout of the volatile anesthetics halothane and isoflurane (1 minimal alveolar anesthetic concentration equivalent, MAC) compared with that observed after an anesthetic concentration of ethanol. After 30 min exposure to each anesthetic and washout, pEPSP area increased to levels significantly more than control (P < 0.01-0.
View Article and Find Full Text PDFThe present studies were designed to test the hypothesis that neuronal-specific protein kinase Cgamma (PKCgamma) plays a critical role in acute ethanol withdrawal hyper-responsiveness in spinal cord. Patch-clamp studies were carried out in motor neurons in neonatal rat spinal cord slices. Postsynaptic currents were evoked by brief pulses of 2 mM N-methyl-D-aspartic acid (NMDA) in the presence of bicuculline methiodide 10 microM; strychnine 5 microM and tetrodotoxin 0.
View Article and Find Full Text PDFWe have previously reported that withdrawal from acute ethanol (EtOH) exposure lowers mechanical thresholds in post-natal day 7 (P7) and post-natal day 21 (P21) rats. The present study tested the hypothesis that daily administration of 4 g/kg 15% EtOH for 5 days in rats during the human developmental equivalent of the third trimester, but not at a later time in development, would alter mechanical thresholds and formalin-induced pain behaviors. A transient decrease in mechanical thresholds (allodynia) was observed in P7 rats upon withdrawal from repeated EtOH between P3 and P7.
View Article and Find Full Text PDFWe have previously found that in post-natal day 7 rats withdrawal from acute and chronic ethanol (EtOH) exposure lowers mechanical thresholds during withdrawal and exacerbates spontaneous pain responses to an inflammatory injury 4 days post-withdrawal. These findings suggested alterations in somatosensory pathways following EtOH exposure during the third trimester developmental equivalent. In this study we wanted to determine whether EtOH exposure during the third trimester equivalent exacerbates mechanical allodynia and thermal hyperalgesia produced by an incisional model of post-operative pain at post-natal day 21.
View Article and Find Full Text PDFAnesthetic effects on receptor or ion channel phosphorylation by enzymes such as protein kinase C (PKC) have been postulated to underlie some aspects of anesthesia. In vitro studies show that anesthetic effects on several receptors are mediated by PKC. To test the importance of PKC for the immobility produced by inhaled anesthetics, we measured the effect of intrathecal injections of PKC-epsilon and -gamma inhibitors on halothane minimum alveolar anesthetic concentration (MAC) in 7-day-old and 21-day-old Sprague-Dawley rats.
View Article and Find Full Text PDFOn withdrawal from opioids many patients experience a heightened sensitivity to stimuli and an exaggerated pain response. The phenomenon has been little studied in infants. We present evidence that in postnatal day 7 rats an exaggerated nociceptive ventral root response of spinal cords in vitro and withdrawal-associated thermal hyperalgesia in vivo are dependent on protein kinase C (PKC), and we document the roles of PKC and gamma isozymes.
View Article and Find Full Text PDFUpon withdrawal from opioids many patients experience a heightened sensitivity to stimuli and an exaggerated pain response. We present evidence that neonatal rats exhibit allodynia and hyperalgesia on acute opiate withdrawal. Postnatal 7 and 21 day rats were used to approximately model a full term human infant and a human child, respectively.
View Article and Find Full Text PDFThe central nervous system undergoes dynamic changes as it matures. However, until recently, very little was known about the impact of these changes on pain and analgesia. This study tested the hypothesis that the epsilon and gamma isozymes of protein kinase C (PKC) contribute to formalin-induced nociception in an age-dependent manner.
View Article and Find Full Text PDF1. Following ethanol (EtOH) exposure, population excitatory postsynaptic potentials (pEPSPs) in isolated spinal cord increase to a level above control (withdrawal hyper-responsiveness). The present studies were designed to characterize this phenomenon and in particular to test the hypothesis that protein kinases mediate withdrawal.
View Article and Find Full Text PDF1. Ethanol (EtOH) tachyphylaxis (acute tolerance), a time-dependent decrease in apparent potency, is known in vivo and in some neuronal preparations. The present studies characterize EtOH tachyphylaxis in spinal motorneurons and test the hypothesis that metabotropic glutamate receptors (mGluRs) play a role.
View Article and Find Full Text PDFUnlabelled: We have previously reported volatile anesthetic actions on glycinergic inhibitory transmission to spinal motor neurons. The present study is a comparable set of experiments on glutamatergic excitatory transmission. We tested the hypothesis that the balance between excitation and inhibition is shifted toward inhibition by larger depressant actions on excitation.
View Article and Find Full Text PDF1. A common anaesthetic endpoint, prevention of withdrawal from a noxious stimulus, is determined primarily in spinal cord, where glycine is an important inhibitory transmitter. To define pre- and postsynaptic anaesthetic actions at glycinergic synapses, the effects of volatile anaesthetic agents on spontaneous and evoked glycinergic currents in spinal cord motor neurons from 6 - 14-day old rats was investigated.
View Article and Find Full Text PDFUnlabelled: Acetylcholine receptors transmit excitatory impulses, are broadly distributed throughout the central nervous system, and are particularly sensitive to the depressant effects of inhaled anesthetics. Thus these receptors are potential mediators of the immobility produced by inhaled anesthetics. We tested this potential in rats by giving intraperitoneal atropine, scopolamine, and mecamylamine to block muscarinic (atropine and scopolamine) and neuronal nicotinic (mecamylamine) acetylcholine receptors.
View Article and Find Full Text PDFUnlabelled: Extensive studies on anesthetic mechanisms have focused on the nicotinic acetylcholine receptor, and to a lesser extent on the muscarinic receptor. We designed the present study to test the hypothesis that cholinergic receptors mediate some of the depressant actions of a volatile anesthetic in rat spinal cord. The cord was removed from 2- to 7-day-old rats and superfused in vitro; ventral root potentials were evoked by stimulating a lumbar dorsal root and recording from the corresponding ipsilateral ventral root.
View Article and Find Full Text PDF