Publications by authors named "Joan Hevel"

Article Synopsis
  • Researchers used computer predictions to design antiviral compounds targeting specific proteins (Nsps) in the SARS-CoV-2 virus responsible for mRNA maturation and immune evasion.
  • The compound Chromenephenylmethanone-1 (CPM-1), selected for its high specificity, was synthesized and tested, showing impressive results with 98.9% inhibition of the virus and no harmful effects on cells.
  • This study highlights the effectiveness of computational modeling in discovering and developing new antiviral drugs against COVID-19.
View Article and Find Full Text PDF

Proper protein arginine methylation by protein arginine methyltransferase 1 (PRMT1) is critical for maintaining cellular health, while dysregulation is often associated with disease. How the activity of PRMT1 is regulated is therefore paramount, but is not clearly understood. Several studies have observed higher order oligomeric species of PRMT1, but it is unclear if these exist at physiological concentrations and there is confusion in the literature about how oligomerization affects activity.

View Article and Find Full Text PDF

The urgent need for new classes of orally available, safe, and effective antivirals─covering a breadth of emerging viruses─is evidenced by the loss of life and economic challenges created by the HIV-1 and SARS-CoV-2 pandemics. As frontline interventions, small-molecule antivirals can be deployed prophylactically or postinfection to control the initial spread of outbreaks by reducing transmissibility and symptom severity. Natural products have an impressive track record of success as prototypic antivirals and continue to provide new drugs through synthesis, medicinal chemistry, and optimization decades after discovery.

View Article and Find Full Text PDF

Glycosylation is an effective way to improve the water solubility of natural products. In this work, a novel glycosyltransferase gene (BbGT) was discovered from Beauveria bassiana ATCC 7159 and heterologously expressed in Escherichia coli. The purified enzyme was functionally characterized through in vitro enzymatic reactions as a UDP-glucosyltransferase, converting quercetin to five monoglucosylated and one diglucosylated products.

View Article and Find Full Text PDF

Protein arginine methylation is a posttranslational modification catalyzed by the protein arginine methyltransferase (PRMT) enzyme family. Dysregulated protein arginine methylation is linked to cancer and a variety of other human diseases. PRMT1 is the predominant PRMT isoform in mammalian cells and acts in pathways regulating transcription, DNA repair, apoptosis, and cell proliferation.

View Article and Find Full Text PDF

Protein arginine methylation is a widespread eukaryotic posttranslational modification that occurs with as much frequency as ubiquitinylation. Yet, how the nine different human protein arginine methyltransferases (PRMTs) recognize their respective protein targets is not well understood. This review summarizes the progress that has been made over the last decade or more to resolve this significant biochemical question.

View Article and Find Full Text PDF

Protein arginine methylation is a widespread eukaryotic posttranslational modification that occurs to both histone and non-histone proteins. The S-adenosyl-L-methionine (AdoMet or SAM)-dependent modification is catalyzed by the protein arginine methyltransferase (PRMT) family of enzymes. In the last several years a series of both direct and indirect assay formats have been described that allow the rate of methylation to be measured.

View Article and Find Full Text PDF

Background: Creating designer molecules using a combination of select domains from polyketide synthases and/or nonribosomal peptide synthetases (NRPS) continues to be a synthetic goal. However, an incomplete understanding of how protein-protein interactions and dynamics affect each of the domain functions stands as a major obstacle in the field. Of particular interest is understanding the basis for a class of methyltransferase domains (MT) that are found embedded within the adenylation domain (A) of fungal NRPS systems instead of in an end-to-end architecture.

View Article and Find Full Text PDF

Protein arginine methyltransferase 7 (PRMT7) catalyzes the formation of monomethylarginine (MMA) but is incapable of performing a dimethylation. Given that PRMT7 performs vital functions in mammalian cells and has been implicated in a variety of diseases, including breast cancer and age-related obesity, elucidating the origin of its strict monomethylation activity is of considerable interest. Three active site residues, Glu172, Phe71, and Gln329, have been reported as particularly important for product specificity and enzymatic activity.

View Article and Find Full Text PDF

Protein arginine methyltransferase 7 (PRMT7) is unique within the PRMT family as it is the only isoform known to exclusively make monomethylarginine (MMA). Given its role in epigenetics, the mechanistic basis for the strict monomethylation activity is under investigation. It is thought that PRMT7 enzymes are unable to add a second methyl group because of steric hindrance in the active site that restricts them to monomethylation.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) catalyze the post-translational methylation of specific arginyl groups within targeted proteins to regulate fundamental biological responses in eukaryotic cells. The major Type I PRMT enzyme, PRMT1, strictly generates monomethyl arginine (MMA) and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA). Multiple diseases can arise from the dysregulation of PRMT1, including heart disease and cancer, which underscores the need to elucidate the origin of product specificity.

View Article and Find Full Text PDF

Many key cellular processes can be regulated by the seemingly simple addition of one, or two, methyl groups to arginine residues by the nine known mammalian protein arginine methyltransferases (PRMTs). The impact that arginine methylation has on cellular well-being is highlighted by the ever growing evidence linking PRMT dysregulation to disease states, which has marked the PRMTs as prominent pharmacological targets. This review is meant to orient the reader with respect to the structural features of the PRMTs that account for catalytic activity, as well as provide a framework for understanding how these enzymes are regulated.

View Article and Find Full Text PDF

Elevated levels of asymmetric dimethylarginine (ADMA) correlate with risk factors for cardiovascular disease. ADMA is generated by the catabolism of proteins methylated on arginine residues by protein arginine methyltransferases (PRMTs) and is degraded by dimethylarginine dimethylaminohydrolase. Reports have shown that dimethylarginine dimethylaminohydrolase activity is down-regulated and PRMT1 protein expression is up-regulated under oxidative stress conditions, leading many to conclude that ADMA accumulation occurs via increased synthesis by PRMTs and decreased degradation.

View Article and Find Full Text PDF

Trypanosoma brucei protein arginine methyltransferase 7 (TbPRMT7) exclusively generates monomethylarginine (MMA), which directs biological consequences distinct from that of symmetric dimethylarginine (SDMA) and asymmetric dimethylarginine (ADMA). However, determinants controlling the strict monomethylation activity are unknown. We present the crystal structure of the TbPRMT7 active core in complex with S-adenosyl-L-homocysteine (AdoHcy) and a histone H4 peptide substrate.

View Article and Find Full Text PDF

Protein arginine methylation is emerging as a significant post-translational modification involved in various cell processes and human diseases. As the major arginine methylation enzyme, protein arginine methyltransferase 1 (PRMT1) strictly generates monomethylarginine and asymmetric dimethylarginine (ADMA), but not symmetric dimethylarginine (SDMA). The two types of dimethylarginines can lead to distinct biological outputs, as highlighted in the PRMT-dependent epigenetic control of transcription.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) aid in the regulation of many biological processes. Accurate control of PRMT activity includes recognition of specific arginyl groups within targeted proteins and the generation of the correct level of methylation, none of which are fully understood. The predominant PRMT in vivo, PRMT1, has wide substrate specificity and is capable of both mono- and dimethylation, which can induce distinct biological outputs.

View Article and Find Full Text PDF

Protein-arginine methyltransferases aid in the regulation of many biological processes by methylating specific arginyl groups within targeted proteins. The varied nature of the response to methylation is due in part to the diverse product specificity displayed by the protein-arginine methyltransferases. In addition to site location within a protein, biological response is also determined by the degree (mono-/dimethylation) and type of arginine dimethylation (asymmetric/symmetric).

View Article and Find Full Text PDF

Modification of protein residues by S-adenosyl-L-methionine (AdoMet)-dependent methyltransferases impacts an array of cellular processes. Here we describe a new approach to quantitatively measure the rate of methyl transfer that is compatible with using protein substrates. The method relies on the ability of reverse-phase resin packed at the end of a pipette tip to quickly separate unreacted AdoMet from radiolabeled protein products.

View Article and Find Full Text PDF

Protein arginine methyltransferases (PRMTs) are enzymes that are involved in many biological processes. Several studies have shown that the identity of the N-terminal fusion tag affects the substrate selectivity of PRMTs. Therefore, to accurately study substrate recognition, it is imperative that a tagless PRMT be used.

View Article and Find Full Text PDF

Modification of small molecules and proteins by methyltransferases impacts a wide range of biological processes. Here we report two methods for measuring methyltransferase activity. First we describe an enzyme-coupled continuous spectrophotometric assay used to quantitatively characterize S-adenosyl-L-methionine (AdoMet or SAM)-dependent methyltransferase activity.

View Article and Find Full Text PDF

Protein arginine methyltransferase 1 (PRMT1) catalyzes the mono- and dimethylation of certain protein arginine residues. Although this posttranslational modification has been implicated in many physiological processes, the molecular basis for PRMT1 substrate recognition is poorly understood. Most modified arginine residues in known PRMT1 substrates reside in repeating "RGG" sequences.

View Article and Find Full Text PDF

Background: Although exposure to asbestos is now regulated, patients continue to be diagnosed with mesothelioma, asbestosis, fibrosis and lung carcinoma because of the long latent period between exposure and clinical disease. Asbestosis is observed in approximately 200,000 patients annually and asbestos-related deaths are estimated at 4,000 annually. Although advances have been made using single gene/gene product or pathway studies, the complexity of the response to asbestos and the many unanswered questions suggested the need for a systems biology approach.

View Article and Find Full Text PDF

DCoH and DCoHalpha are bifunctional proteins that function as 4a-hydroxytetrahydrobiopterin dehydratases and as coactivators of HNF1alpha-dependent transcription. Although these isoforms share sequence and structural similarity and equivalent enzyme activities, DCoH is a hyperstable tetramer whereas DCoHalpha readily forms dimers. Differences in quaternary structure affect the formation of the DCoH(alpha):HNF1alpha complex.

View Article and Find Full Text PDF

Modification of small molecules and proteins by methyltransferases affects a wide range of biological processes. Here, we report an enzyme-coupled continuous spectrophotometric assay to quantitatively characterize S-adenosyl-L-methionine (AdoMet/SAM)-dependent methyltransferase activity. In this assay, S-adenosyl-L-homocysteine (AdoHcy/SAH), the transmethylation product of AdoMet-dependent methyltransferases, is hydrolyzed to S-ribosylhomocysteine and adenine by recombinant S-adenosylhomocysteine/5'-methylthioadenosine nucleosidase (SAHN/MTAN, EC 3.

View Article and Find Full Text PDF

4a-Hydroxy-tetrahydrobiopterin dehydratase/DCoH is a bifunctional protein. In the cytoplasm it is an enzyme required for the regeneration of tetrahydrobiopterin, an essential cofactor for phenylalanine hydroxylase. In the nucleus it functions as a transcriptional coactivator by forming a 2:2 heterotetramer with the hepatic nuclear factor HNF1alpha (HNF1).

View Article and Find Full Text PDF