Complement activation has been implicated in disease states such as hereditary angioedema, ischemia-reperfusion injury, acute respiratory distress syndrome, and acute transplant rejection. Even though the complement cascade provides several protein targets for potential therapeutic intervention only two complement inhibitors have been approved so far for clinical use including anti-C5 antibodies for the treatment of paroxysmal nocturnal hemoglobinuria and purified C1-esterase inhibitor replacement therapy for the control of hereditary angioedema flares. In the present study, optimization of potency and physicochemical properties of a series of thiophene amidine-based C1s inhibitors with potential utility as intravenous agents for the inhibition of the classical pathway of complement is described.
View Article and Find Full Text PDFThe disruption of the p53-Hdm2 protein-protein interaction induces cell growth arrest and apoptosis. We have identified the 1,4-benzodiazepine-2,5-dione scaffold as a suitable template for inhibiting this interaction by binding to the Hdm2 protein. Several compounds have been made with improved potency, solubility, and cell-based activities.
View Article and Find Full Text PDFThe 1,4-benzodiazepine-2,5-dione is a suitable template to disrupt the interaction between p53 and Hdm2. The development of an enantioselective synthesis disclosed the stereochemistry of the active enantiomer. An in vitro p53 peptide displacement assay identified active compounds.
View Article and Find Full Text PDFThe activity and stability of the p53 tumor suppressor are regulated by the human homologue of the mouse double minute 2 (Hdm2) oncoprotein. It has been hypothesized that small molecules disrupting the Hdm2:p53 complex would allow for the activation of p53 and result in growth suppression. We have identified small-molecule inhibitors of the Hdm2:p53 interaction using our proprietary ThermoFluor microcalorimetry technology.
View Article and Find Full Text PDFWe describe the synthesis and structure/activity relationship of RGD mimetics that are potent inhibitors of the integrin alpha(v)beta3. Indol-1-yl propionic acids containing a variety of basic moieties at the 5-position, as well as substitutions alpha and beta to the carboxy terminus were synthesized and evaluated. Novel compounds with improved potency have been identified.
View Article and Find Full Text PDF