Aims/hypothesis: It is generally accepted that structural and functional quantitative imaging of individual islets would be beneficial to elucidate the pathogenesis of type 1 diabetes. We here introduce functional optical coherence imaging (FOCI) for fast, label-free monitoring of beta cell destruction and associated alterations of islet vascularisation.
Methods: NOD mouse and human islets transplanted into the anterior chamber of the eye (ACE) were imaged with FOCI, in which the optical contrast of FOCI is based on intrinsic variations of the index of refraction resulting in a faster tomographic acquisition.
In human, mutations in bicaudal C1 (BICC1), an RNA binding protein, have been identified in patients with kidney dysplasia. Deletion of Bicc1 in mouse leads to left-right asymmetry randomization and renal cysts. Here, we show that BICC1 is also expressed in both the pancreatic progenitor cells that line the ducts during development, and in the ducts after birth, but not in differentiated endocrine or acinar cells.
View Article and Find Full Text PDFWe introduce photothermal optical lock-in Optical Coherence Microscopy (poli-OCM), a volumetric imaging technique, which combines the depth sectioning of OCM with the high sensitivity of photothermal microscopy while maintaining the fast acquisition speed inherent to OCM. We report on the detection of single 40 nm gold particles with a 0.5 μm lateral and 2 μm axial resolution over a 50 μm depth of field and the three-dimensional localization of gold colloids within living cells.
View Article and Find Full Text PDFDiabetes is characterized by hyperglycemia that can result from the loss of pancreatic insulin secreting β-cells in the islets of Langerhans. We analyzed ex vivo the entire gastric and duodenal lobes of a murine pancreas using extended-focus Optical Coherence Microscopy (xfOCM). To identify and quantify the islets of Langerhans observed in xfOCM tomograms we implemented an active contour algorithm based on the level set method.
View Article and Find Full Text PDFImpaired glucose-stimulated insulin secretion (GSIS) and perturbed proinsulin processing are hallmarks of beta cell dysfunction in type 2 diabetes. Signals that can preserve and/or enhance beta cell function are therefore of great therapeutic interest. Here we show that bone morphogenetic protein 4 (Bmp4) and its high-affinity receptor, Bmpr1a, are expressed in beta cells.
View Article and Find Full Text PDF