Publications by authors named "Joan Gimenez-Dejoz"

Rotaxane cross-linkers enhance the toughness of the resulting rotaxane cross-linked polymers through a stress dispersion effect, which is attributed to the mobility of the interlocked structure. To date, the compositional diversity of rotaxane cross-linkers has been limited, and the poor compatibility of these cross-linkers with peptides and proteins has made their use in such materials challenging. The synthesis of a rotaxane composed of peptides may result in a biodegradable cross-linker that is compatible with peptides and proteins, allowing the fortification of polypeptides and proteins and ultimately leading to the development of innovative materials that possess excellent mechanical properties and biodegradability.

View Article and Find Full Text PDF

Peptide-based delivery systems that deliver target molecules into cells have been gaining traction. These systems need cell-penetrating peptides (CPPs), which have the remarkable ability to penetrate into biological membranes and help internalize different cargoes into cells through the cell membranes. The molecular internalization mechanism and structure-function relationships of CPPs are not clear, although the incorporation of nonproteinogenic amino acids such as α-aminoisobutyric acid (Aib) has been reported to increase their helicity, biostability and penetration efficiencies.

View Article and Find Full Text PDF

The delivery of genetic material into plants has been historically challenging due to the cell wall barrier, which blocks the passage of many biomolecules. Carbon nanotube-based delivery has emerged as a promising solution to this problem and has been shown to effectively deliver DNA and RNA into intact plants. Mitochondria are important targets due to their influence on agronomic traits, but delivery into this organelle has been limited to low efficiencies, restricting their potential in genetic engineering.

View Article and Find Full Text PDF

In the genetic modification of plant cells, the mitochondrion is an important target in addition to the nucleus and plastid. However, gene delivery into the mitochondria of plant cells has yet to be established by conventional methods, such as particle bombardment, because of the small size and high mobility of mitochondria. To develop an efficient mitochondria-targeting signal (MTS) that functions in plant cells, we designed the artificial peptide (LURL) and its analogues, which periodically feature hydrophobic α-aminoisobutyric acid (Aib, U) and cationic arginine (R), considering the consensus motif recognized by the mitochondrial import receptor Tom20.

View Article and Find Full Text PDF

Cell-penetrating peptides (CPPs) have been widely utilized as efficient molecular tools for the delivery of bioactive cargoes such as peptides, proteins, and genetic material. However, to improve their versatility as tools in biological environments, the resistance of CPPs to enzymatic degradation and their structural stability must be improved to achieve long-term efficacy. Here we designed and synthesized novel artificial CPPs, poly(LysAibXaa), containing periodic α-aminoisobutyric acid (Aib) and l-lysine by chemoenzymatic polymerization.

View Article and Find Full Text PDF

Almost all natural proteins are composed exclusively of l-amino acids, and this chirality influences their properties, functions, and selectivity. Proteases can recognize proteins composed of l-amino acids but display lower selectivity for their stereoisomers, d-amino acids. Taking this as an advantage, d-amino acids can be used to develop polypeptides or biobased materials with higher biostability.

View Article and Find Full Text PDF

Chemoenzymatic peptide synthesis is an efficient and clean method to generate polypeptides for new applications in the fields of biomedical and functional materials. However, this enzyme-mediated synthesis is dependent on the reaction rate of the protease biocatalyst, which is essentially determined by the natural substrate specificity of the enzyme. Papain, one of the most studied cysteine proteases, is extensively used for the chemoenzymatic synthesis of new polypeptides.

View Article and Find Full Text PDF

The aldo-keto reductase (AKR) superfamily comprises NAD(P)H-dependent enzymes that catalyze the reduction of a variety of carbonyl compounds. AKRs are classified in families and subfamilies. Humans exhibit three members of the AKR1B subfamily: AKR1B1 (aldose reductase, participates in diabetes complications), AKR1B10 (overexpressed in several cancer types), and the recently described AKR1B15.

View Article and Find Full Text PDF

Human aldose reductase (AKR1B1, AR) is a key enzyme of the polyol pathway, catalyzing the reduction of glucose to sorbitol at high glucose concentrations, as those found in diabetic condition. Indeed, AKR1B1 overexpression is related to diabetes secondary complications and, in some cases, with cancer. For many years, research has been focused on finding new AKR1B1 inhibitors (ARIs) to overcome these diseases.

View Article and Find Full Text PDF

Aldo-keto reductases (AKRs) are distributed in three families and multiple subfamilies in mammals. The mouse Akr1b3 gene is clearly orthologous to human AKR1B1, both coding for aldose reductase, and their gene products show similar tissue distribution, regulation by osmotic stress and kinetic properties. In contrast, no unambiguous orthologs of human AKR1B10 and AKR1B15.

View Article and Find Full Text PDF

UVI2008, a retinoic acid receptor (RAR) β/γ agonist originated from C3 bromine addition to the parent RAR pan-agonist 4-[(E)-2-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)-1-propenyl]benzoic acid (TTNPB), is also a selective inhibitor of aldo-keto reductase family member 1B10 (AKR1B10). Thus, it might become a lead drug for the design of compounds targeting both activities, as an AKR1B10 inhibitor and RAR agonist, which could constitute a novel therapeutic approach against cancer and skin-related diseases. Herein, the X-ray structure of the methylated Lys125Arg/Val301Leu AKR1B10 (i.

View Article and Find Full Text PDF

Human enzyme aldo-keto reductase family member 1B10 (AKR1B10) has evolved as a tumor marker and promising antineoplastic target. It shares high structural similarity with the diabetes target enzyme aldose reductase (AR). Starting from the potent AR inhibitor IDD388, we have synthesized a series of derivatives bearing the same halophenoxyacetic acid moiety with an increasing number of bromine (Br) atoms on its aryl moiety.

View Article and Find Full Text PDF

Human aldo-keto reductase 1B15 (AKR1B15) is a newly discovered enzyme which shares 92% amino acid sequence identity with AKR1B10. While AKR1B10 is a well characterized enzyme with high retinaldehyde reductase activity, involved in the development of several cancer types, the enzymatic activity and physiological role of AKR1B15 are still poorly known. Here, the purified recombinant enzyme has been subjected to substrate specificity characterization, kinetic analysis and inhibitor screening, combined with structural modeling.

View Article and Find Full Text PDF