Publications by authors named "Joan Galceran"

Article Synopsis
  • CRISPR-Cas13 systems are popular in research but face challenges due to unintended effects in mammalian cells and the need for improved efficiency.
  • This study optimized targeting in zebrafish by using modified gRNAs and refining nuclear RNA-targeting methods, achieving effective depletion of specific mRNAs with minimal side effects.
  • The research also explored alternative CRISPR-Cas systems that reduce collateral activity, contributing to better RNA targeting strategies and broader applications of CRISPR technology.
View Article and Find Full Text PDF

Epithelial-to-mesenchymal transition (EMT) triggers cell plasticity in embryonic development, adult injured tissues and cancer. Combining the analysis of EMT in cell lines, embryonic neural crest and mouse models of renal fibrosis and breast cancer, we find that there is not a cancer-specific EMT program. Instead, cancer cells dedifferentiate and bifurcate into two distinct and segregated cellular trajectories after activating either embryonic-like or adult-like EMTs to drive dissemination or inflammation, respectively.

View Article and Find Full Text PDF

The adult mammalian brain retains some capacity to replenish neurons and glia, holding promise for brain regeneration. Thus, understanding the mechanisms controlling adult neural stem cell (NSC) differentiation is crucial. Paradoxically, adult NSCs in the subependymal zone transcribe genes associated with both multipotency maintenance and neural differentiation, but the mechanism that prevents conflicts in fate decisions due to these opposing transcriptional programmes is unknown.

View Article and Find Full Text PDF

Background: Immunotherapy is effective, but current biomarkers for patient selection have proven modest sensitivity. Here, we developed VIGex, an optimized gene signature based on the expression level of 12 genes involved in immune response with RNA sequencing.

Methods: We implemented VIGex using the nCounter platform (Nanostring) on a large clinical cohort encompassing 909 tumor samples across 45 tumor types.

View Article and Find Full Text PDF

Despite their external bilateral symmetry, vertebrates have internal left/right (L/R) asymmetries required for optimal organ function. BMP-induced epithelial to mesenchymal transition (EMT) in the lateral plate mesoderm (LPM) triggers L/R asymmetric cell movements toward the midline, higher from the right, which are crucial for heart laterality in vertebrates. However, how the L/R asymmetric levels of EMT factors are achieved is not known.

View Article and Find Full Text PDF

Most animals show external bilateral symmetry, which hinders the observation of multiple internal left-right (L/R) asymmetries that are fundamental to organ packaging and function. In vertebrates, left identity is mediated by the left-specific Nodal-Pitx2 axis that is repressed on the right-hand side by the epithelial-mesenchymal transition (EMT) inducer Snail1 (refs 3, 4). Despite some existing evidence, it remains unclear whether an equivalent instructive pathway provides right-hand-specific information to the embryo.

View Article and Find Full Text PDF

The cholinergic enzyme acetylcholinesterase (AChE) and the catalytic component of the γ-secretase complex, presenilin-1 (PS1), are known to interact. In this study, we investigate the consequences of AChE-PS1 interactions, particularly the influence of AChE in PS1 levels and γ-secretase activity. PS1 is able to co-immunoprecipitate all AChE variants (AChE-R and AChE-T) and molecular forms (tetramers and light subunits) present in the human brain.

View Article and Find Full Text PDF

Neurogenesis relies on a delicate balance between progenitor maintenance and neuronal production. Progenitors divide symmetrically to increase the pool of dividing cells. Subsequently, they divide asymmetrically to self-renew and produce new neurons or, in some brain regions, intermediate progenitor cells (IPCs).

View Article and Find Full Text PDF

Developing axons must control their growth rate to follow the appropriate pathways and establish specific connections. However, the regulatory mechanisms involved remain elusive. By combining live imaging with transplantation studies in mice, we found that spontaneous calcium activity in the thalamocortical system and the growth rate of thalamocortical axons were developmentally and intrinsically regulated.

View Article and Find Full Text PDF

The objective of this exploratory, open-label, single-arm, phase II clinical trial was to evaluate plitidepsin (5 mg/m(2)) administered as a 3-hour continuous intravenous infusion every two weeks to patients with locally advanced/metastatic transitional cell carcinoma of the urothelium who relapsed/progressed after first-line chemotherapy. Treatment cycles were repeated for up to 12 cycles or until disease progression, unacceptable toxicity, patient refusal or treatment delay for >2 weeks. The primary efficacy endpoint was objective response rate according to RECIST.

View Article and Find Full Text PDF

Background And Purpose: The aim was to demonstrate similar pain relief with two schedules of radiotherapy for painful bone metastases.

Materials And Methods: A total of 160 patients were assigned to receive a single 8-Gy fraction or 30 Gy in 10 fractions. Pain intensity was measured on an ordinal pain scale of 0-10.

View Article and Find Full Text PDF

Classical studies of cholinesterase activity during liver dysfunction have focused on butyrylcholinesterase (BuChE), whereas acetylcholinesterase (AChE) has not received much attention. In the current study, liver and plasma AChE levels were investigated in rats with cirrhosis induced after 3 weeks of bile duct ligation (BDL). BDL rats showed a pronounced decrease in liver AChE levels (approximately 50%) compared with sham-operated (non-ligated, NL) controls; whereas liver BuChE appeared unaffected.

View Article and Find Full Text PDF