Tissue-resident memory T (T) cells preferentially reside in peripheral tissues, serving as key players in tumor immunity and immunotherapy. The lack of effective approaches for expanding T cells and delivering these cells in vivo hinders the exploration of T cell-mediated cancer immunotherapy. Here, we report a nanoparticle artificial antigen-presenting cell (nano-aAPC) ex vivo expansion approach and an in vivo delivery system for T cells.
View Article and Find Full Text PDFT cells are critical mediators of antigen-specific immune responses and are common targets for immunotherapy. Biomaterial scaffolds have previously been used to stimulate antigen-presenting cells to elicit antigen-specific immune responses; however, structural and molecular features that directly stimulate and expand naïve, endogenous, tumor-specific T cells in vivo have not been defined. Here, an artificial lymph node (aLN) matrix is created, which consists of an extracellular matrix hydrogel conjugated with peptide-loaded-MHC complex (Signal 1), the co-stimulatory signal anti-CD28 (Signal 2), and a tethered IL-2 (Signal 3), that can bypass challenges faced by other approaches to activate T cells in situ such as vaccines.
View Article and Find Full Text PDFHelper (CD4) T cells perform direct therapeutic functions and augment responses of cells such as cytotoxic (CD8) T cells against a wide variety of diseases and pathogens. Nevertheless, inefficient synthetic technologies for expansion of antigen-specific CD4 T cells hinders consistency and scalability of CD4 T cell-based therapies, and complicates mechanistic studies. Here we describe a nanoparticle platform for ex vivo CD4 T cell culture that mimics antigen presenting cells (APC) through display of major histocompatibility class II (MHC II) molecules.
View Article and Find Full Text PDFCross-reactive immunity between SARS-CoV-2 and other related coronaviruses has been well-documented, and it may play a role in preventing severe COVID-19. Epidemiological studies early in the pandemic showed a geographical association between high influenza vaccination rates and lower incidence of SARS-CoV-2 infection. We, therefore, analyzed whether exposure to influenza A virus (IAV) antigens could influence the T cell repertoire in response to SARS-CoV-2, indicating a heterologous immune response between these 2 unrelated viruses.
View Article and Find Full Text PDFT cells are critical players in disease; yet, their antigen-specificity has been difficult to identify, as current techniques are limited in terms of sensitivity, throughput, or ease of use. To address these challenges, we increased the throughput and translatability of magnetic nanoparticle-based artificial antigen presenting cells (aAPCs) to enrich and expand (E+E) murine or human antigen-specific T cells. We streamlined enrichment, expansion, and aAPC production processes by enriching CD8+ T cells directly from unpurified immune cells, increasing parallel processing capacity of aAPCs in a 96-well plate format, and designing an adaptive aAPC that enables multiplexed aAPC construction for E+E and detection.
View Article and Find Full Text PDFAdoptive immunotherapy (AIT) can mediate durable regression of cancer, but widespread adoption of AIT is limited by the cost and complexity of generating tumor-specific T cells. Here we develop an Enrichment + Expansion strategy using paramagnetic, nanoscale artificial antigen presenting cells (aAPC) to rapidly expand tumor-specific T cells from rare naïve precursors and predicted neo-epitope responses. Nano-aAPC are capable of enriching rare tumor-specific T cells in a magnetic column and subsequently activating them to induce proliferation.
View Article and Find Full Text PDFIron-dextran nanoparticles functionalized with T cell activating proteins have been used to study T cell receptor (TCR) signaling. However, nanoparticle triggering of membrane receptors is poorly understood and may be sensitive to physiologically regulated changes in TCR clustering that occur after T cell activation. Nano-aAPC bound 2-fold more TCR on activated T cells, which have clustered TCR, than on naive T cells, resulting in a lower threshold for activation.
View Article and Find Full Text PDFUnlabelled: Artificial antigen presenting cells (aAPC), which deliver stimulatory signals to cytotoxic lymphocytes, are a powerful tool for both adoptive and active immunotherapy. Thus far, aAPC have been synthesized by coupling T cell activating proteins such as CD3 or MHC-peptide to micron-sized beads. Nanoscale platforms have different trafficking and biophysical interaction properties and may allow development of new immunotherapeutic strategies.
View Article and Find Full Text PDFThe structure of a T cell receptor (TCR) and its affinity for cognate antigen are fixed, but T cells regulate binding sensitivity through changes in lateral membrane organization. TCR microclusters formed upon antigen engagement participate in downstream signaling. Microclusters are also found 3-4 days after activation, leading to enhanced antigen binding upon rechallenge.
View Article and Find Full Text PDFChanges in the clustering of surface receptors modulate cell responses to ligands. Hence, global measures of receptor clustering can be useful for characterizing cell states. Using T cell receptor for antigen as an example, we show that k-space image correlation spectroscopy of quantum dots blinking detects T cell receptor clusters on a scale of tens of nanometers and reports changes in clustering after T cell activation.
View Article and Find Full Text PDFZwitterionic capsular polysaccharides (ZPS) of commensal bacteria are characterized by having both positive and negative charged substituents on each repeating unit of a highly repetitive structure that has an alpha-helix configuration. In this paper we look at the immune response of CD8(+) T cells to ZPSs. Intraperitoneal application of the ZPS Sp1 from Streptococcus pneumoniae serotype 1 induces CD8(+)CD28(-) T cells in the spleen and peritoneal cavity of WT mice.
View Article and Find Full Text PDFNatural killer T (NKT) cells play a pivotal role in maintaining immune homostasis. They recognize lipid antigen in the context of CD1d molecules and subsequently produce cytokines that activate cells of both the innate and adaptive immune responses. Many studies examining patients with autoimmune disease or cancer have shown that there is a reduction in both NKT cell number and function.
View Article and Find Full Text PDFA major barrier to successful antitumor vaccination is tolerance of high-avidity T cells specific to tumor antigens. In keeping with this notion, HER-2/neu (neu)-targeted vaccines, which raise strong CD8(+) T cell responses to a dominant peptide (RNEU(420-429)) in WT FVB/N mice and protect them from a neu-expressing tumor challenge, fail to do so in MMTV-neu (neu-N) transgenic mice. However, treatment of neu-N mice with vaccine and cyclophosphamide-containing chemotherapy resulted in tumor protection in a proportion of mice.
View Article and Find Full Text PDFIn this report, we review a novel method for probing the membrane organization of T cells using dimeric major histocompatibility complexes (MHC), MHC-Ig. MHC-Ig complexes are useful reagents for quantitative analysis of binding data since their valency is controlled. These complexes can be easily labeled and loaded with a variety of peptides.
View Article and Find Full Text PDF