We present the design of an adiabatic taper coupled GeSi electro-absorption modulator, which is based on Franz-Keldysh effect. The device has an active region of 0.8×50 µm, an extinction ratio of more than 6 dB and an insertion loss less than 3 dB at the wavelength of 1550 nm.
View Article and Find Full Text PDFWe demonstrate a high speed GeSi electro-absorption (EA) modulator monolithically integrated on 3 µm silicon-on-insulator (SOI) waveguide. The demonstrated device has a compact active region of 1.0 × 55 μm(2), an insertion loss of 5 dB and an extinction ratio of 6 dB at wavelength of 1550 nm.
View Article and Find Full Text PDFWe present two effective approaches to improve the responsivity of high speed waveguide-based Ge photodetectors integrated on a 0.25 μm silicon-on-insulator (SOI) platform. The main cause of poor responsivity is identified as metal absorption from the top contact to Ge.
View Article and Find Full Text PDFWe present the design and fabrication of a waveguide-based Ge electro-absorption (EA) modulator integrated with a 3 µm silicon-on-isolator (SOI) waveguide. The proposed Ge EA modulator employs a butt-coupled horizontally-oriented p-i-n structure. The optical design achieves a low-loss transition from Ge to Si waveguides.
View Article and Find Full Text PDFWe demonstrate a compact waveguide-based high-speed Ge electro-absorption (EA) modulator integrated with a single mode 3 µm silicon-on-isolator (SOI) waveguide. The Ge EA modulator is based on a horizontally-oriented p-i-n structure butt-coupled with a deep-etched silicon waveguide, which transitions adiabatically to a shallow-etched single mode large core SOI waveguide. The demonstrated device has a compact active region of 1.
View Article and Find Full Text PDFWe demonstrate a compact, single-chip 40-channel, dense wavelength division multiplexing (DWDM) variable attenuator multi/demultiplexer (VMUX/DEMUX) by monolithic integration of an echelle grating and high-speed p-i-n VOA on the silicon-on-insulator (SOI) platform. The demonstrated device has a flat-top filter shape, on chip loss of 5.0 dB, low PDL of 0.
View Article and Find Full Text PDFWe demonstrate low loss shallow-ridge silicon waveguides with an average propagation loss of 0.274 + or - 0.008 dB/cm in the C-band (1530 nm - 1565 nm).
View Article and Find Full Text PDF