Electrically evoked compound action potentials (ECAPs) generated in the subthalamic nucleus (STN) contain features that may be useful for titrating deep brain stimulation (DBS) therapy for Parkinson's disease. Delivering a strong therapeutic effect with DBS therapies, however, relies on selectively targeting neural pathways to avoid inducing side effects. In this study, we investigated the spatiotemporal features of ECAPs in and around the STN across parameter sweeps of stimulation current amplitude, pulse width, and electrode configuration, and used a linear classifier of ECAP responses to predict electrode location.
View Article and Find Full Text PDFTremor Other Hyperkinet Mov (N Y)
January 2022
Background: While harmaline has been used as a pharmacological model of essential tremor (ET) in rodents and pigs, less is known about the effects of this pharmacological treatment in awake-behaving non-human primates. In this study, we investigated the time-course, amplitude, frequency, and consistency of harmaline tremor in primates.
Methods: Three rhesus macaques were administered doses of harmaline ranging from 2-12 mg/kg (i.
The cerebellar-receiving area of the motor thalamus is the primary anatomical target for treating essential tremor with deep brain stimulation (DBS). Although neuroimaging studies have shown that higher stimulation frequencies in this target correlate with increased cortical metabolic activity, less is known about the cellular-level functional changes that occur in the primary motor cortex (M1) with thalamic stimulation and how these changes depend on the frequency of DBS. In this study, we used a preclinical animal model of DBS to collect single-unit spike recordings in M1 before, during, and after DBS targeting the cerebellar-receiving area of the motor thalamus (VPLo, nucleus ventralis posterior lateralis pars oralis).
View Article and Find Full Text PDFFunctional MRI (fMRI) has become an important tool for probing network-level effects of deep brain stimulation (DBS). Previous DBS-fMRI studies have shown that electrical stimulation of the ventrolateral (VL) thalamus can modulate sensorimotor cortices in a frequency and amplitude dependent manner. Here, we investigated, using a swine animal model, how the direction and orientation of the electric field, induced by VL-thalamus DBS, affects activity in the sensorimotor cortex.
View Article and Find Full Text PDF