Aspen (Populus tremula L.) is a keystone species and a model system for forest tree genomics. We present an updated resource comprising a chromosome-scale assembly, population genetics and genomics data.
View Article and Find Full Text PDFNucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes form a major line of defense in plants, acting in both pathogen recognition and resistance machinery activation. NLRs are reported to form large gene clusters in limber pine (Pinus flexilis), but it is unknown how widespread this genomic architecture may be among the extant species of conifers (Pinophyta). We used comparative genomic analyses to assess patterns in the abundance, diversity, and genomic distribution of NLR genes.
View Article and Find Full Text PDFIn species with large and complex genomes such as conifers, dense linkage maps are a useful resource for supporting genome assembly and laying the genomic groundwork at the structural, populational, and functional levels. However, most of the 600+ extant conifer species still lack extensive genotyping resources, which hampers the development of high-density linkage maps. In this study, we developed a linkage map relying on 21,570 single nucleotide polymorphism (SNP) markers in Sitka spruce (Picea sitchensis [Bong.
View Article and Find Full Text PDFMultisite common garden experiments, exposing common pools of genetic diversity to a range of environments, allow quantification of plastic and genetic components of trait variation. For tree species, such studies must be long term as they typically only express mature traits after many years. As well as evaluating standing genetic diversity, these experiments provide an ongoing test of genetic variation against changing environmental conditions and form a vital resource for understanding how species respond to abiotic and biotic variation.
View Article and Find Full Text PDFSpruces (Picea spp.) are coniferous trees widespread in boreal and mountainous forests of the northern hemisphere, with large economic significance and enormous contributions to global carbon sequestration. Spruces harbor very large genomes with high repetitiveness, hampering their comparative analysis.
View Article and Find Full Text PDFIn tree species, genomic prediction offers the potential to forecast mature trait values in early growth stages, if robust marker-trait associations can be identified. Here we apply a novel multispecies approach using genotypes from a new genotyping array, based on 20,795 single nucleotide polymorphisms (SNPs) from three closely related pine species (, and ), to test for associations with growth and phenology data from a common garden study. Predictive models constructed using significantly associated SNPs were then tested and applied to an independent multisite field trial of .
View Article and Find Full Text PDFUnderstanding local adaptation has become a key research area given the ongoing climate challenge and the concomitant requirement to conserve genetic resources. Perennial plants, such as forest trees, are good models to study local adaptation given their wide geographic distribution, largely outcrossing mating systems, and demographic histories. We evaluated signatures of local adaptation in European aspen (Populus tremula) across Europe by means of whole-genome resequencing of a collection of 411 individual trees.
View Article and Find Full Text PDFLocal adaptation occurs as the result of differential selection among populations. Observations made under common environmental conditions may reveal phenotypic differences between populations with an underlying genetic basis; however, exposure to a contrasting novel environment can trigger release of otherwise unobservable (cryptic) genetic variation. We conducted a waterlogging experiment on a common garden trial of Scots pine, (L.
View Article and Find Full Text PDFThe ability of a population to genetically adapt to a changing environment is contingent not only on the level of existing genetic variation within that population, but also on the gene flow received from differently adapted populations. Effective pollen-mediated gene flow among plant populations requires synchrony of flowering. Therefore differences in timing of flowering among genetically divergent populations may reduce their ability to adapt to environmental change.
View Article and Find Full Text PDFEusociality is one of the most complex forms of social organization, characterized by cooperative and reproductive units termed colonies. Altruistic behavior of workers within colonies is explained by inclusive fitness, with indirect fitness benefits accrued by helping kin. Members of a social insect colony are expected to be more closely related to one another than they are to other conspecifics.
View Article and Find Full Text PDFWhole-genome-shotgun (WGS) sequencing of total genomic DNA was used to recover ~1 Mbp of novel mitochondrial (mtDNA) sequence from Pinus sylvestris (L.) and three members of the closely related Pinus mugo species complex. DNA was extracted from megagametophyte tissue from six mother trees from locations across Europe, and 100-bp paired-end sequencing was performed on the Illumina HiSeq platform.
View Article and Find Full Text PDFIn recent years, numerous articles have addressed management strategies aimed at assisting forests to adapt to climate change. However, these seldom take into account the practical and economic implications of implementing these strategies, notably, supply of forest plants and seed. Using semi-structured interviews with practitioners involved in the plant and seed supply chain in Great Britain, we highlight a series of practical and economic bottlenecks commonly encountered in the supply of locally sourced seed and domestically produced planting stock for native woodland and hedging markets.
View Article and Find Full Text PDFSpatial heterogeneity in pathogen pressure leads to genetic variation in, and evolution of, disease-related traits among host populations. In contrast, hosts are expected to be highly susceptible to exotic pathogens as there has been no evolution of defence responses. Host response to pathogens can therefore be an indicator of a novel or endemic pathosystem.
View Article and Find Full Text PDFGene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q.
View Article and Find Full Text PDFA recently emerging bleeding canker disease, caused by Pseudomonas syringae pathovar aesculi (Pae), is threatening European horse chestnut in northwest Europe. Very little is known about the origin and biology of this new disease. We used the nucleotide sequences of seven commonly used marker genes to investigate the phylogeny of three strains isolated recently from bleeding stem cankers on European horse chestnut in Britain (E-Pae).
View Article and Find Full Text PDFAdaptation to new environments can start from new mutations or from standing variation already present in natural populations. Whether admixture constrains or facilitates adaptation from standing variation is largely unknown, especially in ecological keystone or foundation species. We examined patterns of neutral and adaptive population divergence in Populus tremula L.
View Article and Find Full Text PDFThirty-four novel microsatellite markers developed for wood cricket (Nemobius sylvestris) were tested and optimized. Twenty-five microsatellite loci were polymorphic, exhibiting between two and nine alleles. Observed heterozygosities ranged from 0.
View Article and Find Full Text PDF