Correction for 'The impact of viscosity asymmetry on phase separating binary mixtures with suspended colloids' by Javeria Siddiqui , 2024, , 5564-5571, https://doi.org/10.1039/D3SM00955F.
View Article and Find Full Text PDFThe introduction of neutrally wetting colloidal particles into coarsening binary fluids is known to arrest the dynamics of the phase separation, as the colloids tend to be captured by the growing interfaces to reduce the free energy of the system. This phenomenon has often been studied in systems with symmetric fluid viscosities. In this study, we investigate the behavior of colloidal particles introduced into asymmetric binary fluids with a viscosity contrast.
View Article and Find Full Text PDFWe present a technique for measuring the interactions between pairs of colloidal particles in two optical traps. This method is particularly suitable for measuring strongly attractive potentials, an otherwise challenging task. The interaction energy is calculated from the distribution of inter-particle separations by accounting for the contribution from the optical traps with arbitrary trap profiles.
View Article and Find Full Text PDFArtificial active particles are autonomous agents able to convert energy from the environment into net propulsion, breaking detailed balance and the action-reaction law, clear signatures of their out-of-equilibrium nature. Here we investigate the emergence of directed motion in clusters composed of passive and catalytically active apolar colloids. We use a light-induced chemophoretic flow to rapidly assemble hybrid self-propelling clusters composed of hematite particles and passive silica spheres.
View Article and Find Full Text PDFWe show that arbitrarily large polar flocks are susceptible to the presence of a single small obstacle. In a wide region of parameter space, the obstacle triggers counterpropagating dense bands leading to reversals of the flow. In very large systems, these bands interact, yielding a never-ending chaotic dynamics that constitutes a new disordered phase of the system.
View Article and Find Full Text PDFWe use a computational model to investigate the emergence of interaction forces between pairs of intruders in a horizontally vibrated granular fluid. The time evolution of a pair of particles shows a maximum of the likelihood to find the pair at contact in the direction of shaking. This relative interaction is further studied by fixing the intruders in the simulation box where we identify effective mechanical forces and torques between particles and quantify an emergent long range attractive force as a function of the shaking relative angle, the amplitude, and the packing density of grains.
View Article and Find Full Text PDFHypothesis: Field induced assembling/disassembling of paramagnetic colloids is strongly influenced by the configuration of the applied field, the surface chemistry of the particles, the nearby presence of an external boundary or the particle density. The trapping of the particles at fluid-fluid interface is expected to promote different assembling/disassembling routes together with new approaches for controlled manipulation of self-assembled structures and the fabrication of new functional patterned surfaces.
Experiments: We study the reversible disassembly itineraries that emerge in linear aggregates of micrometer-sized magnetic particles adsorbed onto a fluid interface when the applied field is abruptly tilted out of the confining surface: the unzipping of chains laterally aggregated, the partial fragmentation of the chains, the gradual separation of the monomers and the abrupt colloidal explosion.
Proc Natl Acad Sci U S A
October 2018
Collections of interacting active particles, self-propelling or not, have shown remarkable phenomena including the emergence of dynamic patterns across different length scales, from animal groups to vibrated grains, microtubules, bacteria, and chemical- or field-driven colloids. Burgeoning experimental and simulation activities are now exploring the possibility of realizing solid and stable structures from passive elements that are assembled by a few active dopants. Here we show that such an elusive task may be accomplished by using a small amount of apolar dopants, namely synthetic active but not self-propelling units.
View Article and Find Full Text PDFAs a result of the competition between self-propulsion and excluded volume interactions, purely repulsive self-propelled spherical particles undergo a motility-induced phase separation (MIPS). We carry out a systematic computational study, considering several interaction potentials, systems confined by hard walls or with periodic boundary conditions, and different initial conditions. This approach allows us to identify that, despite its non-equilibrium nature, the equations of state of Active Brownian Particles (ABP) across MIPS verify the characteristic properties of first-order liquid-gas phase transitions, meaning, equality of pressure of the coexisting phases once a nucleation barrier has been overcome and, in the opposite case, hysteresis around the transition as long as the system remains in the metastable region.
View Article and Find Full Text PDF