The burden of senescent cells (SnCs), which do not divide but are metabolically active and resistant to death by apoptosis, is increased in older adults and those with chronic diseases. These individuals are also at the greatest risk for morbidity and mortality from SARS-CoV-2 infection. SARS-CoV-2 complications include cytokine storm and multiorgan failure mediated by the same factors as often produced by SnCs through their senescence-associated secretory phenotype (SASP).
View Article and Find Full Text PDFBackground: The COVID-19 pandemic highlights the need for therapies that improve immune function in older adults, including interferon (IFN)-induced antiviral immunity that declines with age. In a previous phase 2a trial, RTB101 (previously known as BEZ235), an oral mechanistic target of rapamycin (mTOR) inhibitor, was observed to increase IFN-induced antiviral gene expression and decrease the incidence of respiratory tract infections (RTIs) in older adults. Therefore, we aimed to investigate whether oral RTB101 upregulated IFN-induced antiviral responses and decreased the incidence of viral RTIs when given once daily for 16 weeks during winter cold and flu season.
View Article and Find Full Text PDFInhibition of the mechanistic target of rapamycin (mTOR) protein kinase extends life span and ameliorates aging-related pathologies including declining immune function in model organisms. The objective of this phase 2a randomized, placebo-controlled clinical trial was to determine whether low-dose mTOR inhibitor therapy enhanced immune function and decreased infection rates in 264 elderly subjects given the study drugs for 6 weeks. A low-dose combination of a catalytic (BEZ235) plus an allosteric (RAD001) mTOR inhibitor that selectively inhibits target of rapamycin complex 1 (TORC1) downstream of mTOR was safe and was associated with a significant ( = 0.
View Article and Find Full Text PDFRapalogs, inhibitors of mTORC1 (mammalian target of rapamycin complex 1), increase life span and delay age-related phenotypes in many species. However, the molecular mechanisms have not been fully elucidated. We determined gene expression changes comparing 6- and 24-month-old rats in the kidney, liver, and skeletal muscle, and asked which of these changes were counter-regulated by a clinically-translatable (short-term and low-concentration) treatment, with a rapalog (RAD001).
View Article and Find Full Text PDFInhibition of the mammalian target of rapamycin (mTOR) pathway extends life span in all species studied to date, and in mice delays the onset of age-related diseases and comorbidities. However, it is unknown if mTOR inhibition affects aging or its consequences in humans. To begin to assess the effects of mTOR inhibition on human aging-related conditions, we evaluated whether the mTOR inhibitor RAD001 ameliorated immunosenescence (the decline in immune function during aging) in elderly volunteers, as assessed by their response to influenza vaccination.
View Article and Find Full Text PDFNative cytochrome c (cyt c) has a compact tertiary structure with a hexacoordinated heme iron and functions in electron transport in mitochondria and apoptosis in the cytoplasm. However, the possibility that protein modifications confer additional functions to cyt c has not been explored. Disruption of methionine 80 (M80)-Fe ligation of cyt c under nitrative stress has been reported.
View Article and Find Full Text PDFS-nitrosylation is the binding of an NO group to a cysteine or other thiol. Like phosphorylation, S-nitrosylation is a precisely targeted and rapidly reversible post-translational modification that serves as an on/off switch for protein function during cell signaling. However, unlike phosphorylation, S-nitrosylation of proteins occurs nonenzymatically and is mediated, at least in part, by redox-regulated chemical reactions in cells.
View Article and Find Full Text PDFS-Nitrosylation, the modification of a cysteine thiol by a nitric oxide (NO) group, has emerged as an important posttranslational modification of signaling proteins. An impediment to studying the regulation of cell signaling by S-nitrosylation has been the technical challenge of detecting endogenously S-nitrosylated proteins. Detection of S-nitrosylated proteins is difficult because the S-NO bond is labile and therefore can be lost or gained artifactually during sample preparation.
View Article and Find Full Text PDFThe therapeutic effects of inhaled nitric oxide (NO) therapy are thought to be restricted to the pulmonary vasculature because of rapid inactivation of NO by hemoglobin in the bloodstream. However, recent data suggest that inhaled NO may not only be scavenged by the heme iron of hemoglobin but also may react with protein thiols in the bloodstream, including cysteine-93 of the hemoglobin B subunit. Reaction of NO with protein or peptide thiols is termed S-nitrosylation and results in the formation of relatively stable protein S-nitrosothiols that carry NO bioactivity to distal organs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2006
Recent data suggest that either excessive or deficient levels of protein S-nitrosylation may contribute to disease. Disruption of S-nitrosothiol (SNO) homeostasis may result not only from altered nitric oxide (NO) synthase activity but also from alterations in the activity of denitrosylases that remove NO groups. A subset of patients with familial amyotrophic lateral sclerosis (ALS) have mutations in superoxide dismutase 1 (SOD1) that increase the denitrosylase activity of SOD1.
View Article and Find Full Text PDFS-Nitrosylation is the modification of a cysteine thiol on a protein or peptide by a nitric oxide (NO) group. Increasing evidence suggests that S-nitrosylation of critical cysteine residues regulates protein function and cell signaling. However, progress in the field has been hampered by a lack of accurate and easy methods for detecting S-nitrosylation and other labile NO-based modifications in samples.
View Article and Find Full Text PDFFree Radic Res
January 2004
Protein nitrosylation is emerging as a key mechanism by which nitric oxide regulates cell signaling. Nitrosylation is the binding of a NO group to a metal or thiol (-SH) on a peptide or protein. Like phosphorylation, nitrosylation is a precisely targeted and rapidly reversible posttranslational modification that allows cells to flexibly and specifically respond to changes in their environment.
View Article and Find Full Text PDFCytochrome c released from mitochondria into the cytoplasm plays a critical role in many forms of apoptosis by stimulating apoptosome formation and subsequent caspase activation. However, the mechanisms regulating cytochrome c apoptotic activity are not understood. Here we demonstrate that cytochrome c is nitrosylated on its heme iron during apoptosis.
View Article and Find Full Text PDF