Publications by authors named "Joan Aymami"

Variolin B is a rare marine alkaloid that showed promising anti-cancer activity soon after its isolation. It acts as a cyclin-dependent kinase inhibitor, although the precise mechanism through which it exerts the cytotoxic effects is still unknown. The crystal structure of a variolin B bound to a DNA forming a pseudo-Holliday junction shows that this compound can also contribute, through intercalative binding, to either the formation or stabilization of multi-stranded DNA forms.

View Article and Find Full Text PDF

Ultrasound technology was proved as an efficient processing technique to obtain micro-molded specimens of polylactide (PLA) and polybutylene succinate (PBS), which were selected as examples of biodegradable polyesters widely employed in commodity and specialty applications. Operational parameters such as amplitude, molding force and processing time were successfully optimized to prepare samples with a decrease in the number average molecular weight lower than 6%. Ultrasonic waves also seemed an ideal energy source to provide effective disaggregation of clay silicate layers, and therefore exfoliated nanocomposites.

View Article and Find Full Text PDF

Ellipticine is a natural plant product that has been found to be a powerful anticancer drug. Although still unclear, its mechanism of action is considered to be mainly based on DNA intercalation and/or the inhibition of topoisomerase II. Many experimental data suggest an intercalation based on stacking interactions along the major base-pair axis, but alternative binding modes have been proposed, in particular for ellipticine derivatives.

View Article and Find Full Text PDF

Prodigiosin is a red pigment produced by Serratia marcescens with apoptotic activity. We examined the mechanism of action of this tripyrrole alkaloid, focusing on its interaction with DNA and its ability to inhibit both topoisomerase I and topoisomerase II. We also evaluated the DNA damage induced in cancer cell lines.

View Article and Find Full Text PDF

We present the crystal structure of an acridine drug derivatized at carbon 9, [N(alpha)-(9-acridinoyl)-tetraarginine], intercalated within the dodecamer [d(CGCGAATTCGCG)](2). The presence of a lateral chain at the central carbon 9 atom differentiates this compound from most acridine drugs hitherto studied, which are usually derivatized at carbon 4. The DNA:drug interaction we observe differs from that observed in previous studies, which primarily involves shorter, mainly hexameric sequences, in two important regards: the acridine intercalates within an AA/TT base step, rather than within a CG/CG base step; and the binding site is located at the center of the sequence, rather than at one end of the duplex.

View Article and Find Full Text PDF

Holliday junctions are four-stranded DNA complexes that are formed during recombination and related DNA repair events. Much work has focused on the overall structure and properties of four-way junctions in solution, but we are just now beginning to understand these complexes at the atomic level. The crystal structures of two all-DNA Holliday junctions have been determined recently from the sequences d(CCGGGACCGG) and d(CCGGTACCGG).

View Article and Find Full Text PDF