Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg).
View Article and Find Full Text PDFSystemic iron homeostasis is mainly controlled by the liver through synthesis of the peptide hormone hepcidin (encoded by Hamp), the key regulator of duodenal iron absorption and macrophage iron release. Here we show that the liver-specific microRNA miR-122 is important for regulating Hamp mRNA expression and tissue iron levels. Efficient and specific depletion of miR-122 by injection of a locked-nucleic-acid-modified (LNA-modified) anti-miR into WT mice caused systemic iron deficiency, characterized by reduced plasma and liver iron levels, mildly impaired hematopoiesis, and increased extramedullary erythropoiesis in the spleen.
View Article and Find Full Text PDFBackground: The proprotein convertase subtilisin/kexin type 9 (PCSK9) is an important factor in the etiology of familial hypercholesterolemia (FH) and is also an attractive therapeutic target to reduce low density lipoprotein (LDL) cholesterol. PCSK9 accelerates the degradation of hepatic low density lipoprotein receptor (LDLR) and low levels of hepatic PCSK9 activity are associated with reduced levels of circulating LDL-cholesterol.
Methodology/principal Findings: The present study presents the first evidence for the efficacy of a locked nucleic acid (LNA) antisense oligonucleotide (LNA ASO) that targets both human and mouse PCSK9.
microRNA-155 (miR-155) has been implicated as a central regulator of the immune system, but its function during acute inflammatory responses is still poorly understood. Here we show that exposure of cultured macrophages and mice to lipopolysaccharide (LPS) leads to up-regulation of miR-155 and that the transcription factor c/ebp Beta is a direct target of miR-155. Interestingly, expression profiling of LPS-stimulated macrophages combined with overexpression and silencing of miR-155 in murine macrophages and human monocytic cells uncovered marked changes in the expression of granulocyte colony-stimulating factor (G-CSF), a central regulator of granulopoiesis during inflammatory responses.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
March 2009
N-methyl-D-aspartate (NMDA) glutamate receptors are regulators of fast neurotransmission and synaptic plasticity in the brain. Disruption of NMDA-mediated glutamate signaling has been linked to behavioral deficits displayed in psychiatric disorders such as schizophrenia. Recently, noncoding RNA molecules such as microRNAs (miRNAs) have emerged as critical regulators of neuronal functions.
View Article and Find Full Text PDFmicroRNAs (miRNAs) are small regulatory RNAs that are important in development and disease and therefore represent a potential new class of targets for therapeutic intervention. Despite recent progress in silencing of miRNAs in rodents, the development of effective and safe approaches for sequence-specific antagonism of miRNAs in vivo remains a significant scientific and therapeutic challenge. Moreover, there are no reports of miRNA antagonism in primates.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a novel class of small endogenous non-coding RNAs that regulate gene expression post-transcriptionally by binding to their cognate target mRNAs. Emerging evidence implies that miRNAs play important roles in cancer and thus, miRNAs have rapidly emerged as valuable markers for cancer diagnostics and promising targets for therapeutics. Locked nucleic acid (LNA) is a conformational RNA analoque that binds complementary RNA with unprecedented affinity and specificity.
View Article and Find Full Text PDFMicroRNA-122 (miR-122) is an abundant liver-specific miRNA, implicated in fatty acid and cholesterol metabolism as well as hepatitis C viral replication. Here, we report that a systemically administered 16-nt, unconjugated LNA (locked nucleic acid)-antimiR oligonucleotide complementary to the 5' end of miR-122 leads to specific, dose-dependent silencing of miR-122 and shows no hepatotoxicity in mice. Antagonism of miR-122 is due to formation of stable heteroduplexes between the LNA-antimiR and miR-122 as detected by northern analysis.
View Article and Find Full Text PDFTherapeutic application of the recently discovered small interfering RNA (siRNA) gene silencing phenomenon will be dependent on improvements in molecule bio-stability, specificity and delivery. To address these issues, we have systematically modified siRNA with the synthetic RNA-like high affinity nucleotide analogue, Locked Nucleic Acid (LNA). Here, we show that incorporation of LNA substantially enhances serum half-life of siRNA's, which is a key requirement for therapeutic use.
View Article and Find Full Text PDFWe have evaluated antisense design and efficacy of locked nucleic acid (LNA) and DNA oligonucleotide (ON) mix-mers targeting the conserved HIV-1 dimerization initiation site (DIS). LNA is a high affinity nucleotide analog, nuclease resistant and elicits minimal toxicity. We show that inclusion of LNA bases in antisense ONs augments the interference of HIV-1 genome dimerization.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2004
The concept of small interfering RNA (siRNA) has been extended to include not only short double-stranded RNA of 19-25bp, but also single-stranded antisense RNA of the same length, since such single-stranded antisense siRNAs were recently found to be able to inhibit gene expression as well. We made comprehensive comparison of double- and single-stranded siRNA functions in RNA interference (RNAi), targeting multiple sites and different mRNAs, measuring RNAi effects at different time-points and in different cell lines, and examining response curves. Duplex siRNAs were found to be more potent than single-stranded antisense siRNAs.
View Article and Find Full Text PDFAntisense DNA target sites can be selected by the accessibility of the mRNA target. It remains unknown whether a mRNA site that is accessible to an antisense DNA is also a good candidate target site for a siRNA. Here, we reported a parallel analysis of 12 pairs of antisense DNAs and siRNA duplexes for their potency to inhibit reporter luciferase activity in mammalian cells, both of the antisense DNA and siRNA agents in a pair being directed to same site in the mRNA.
View Article and Find Full Text PDFThe baculovirus Autographa californica multiple nucleopolyhedrosis virus causes non-productive infection in mammalian cells. Recombinant baculovirus therefore has the capability to transfer and express heterologous genes in these cells if a mammalian promoter governs the gene of interest. We have investigated the possibility of using baculovirus as a tool to produce recombinant adeno-associated virus (rAAV).
View Article and Find Full Text PDF