Microzonation is one of the essential tools in seismology to mitigate earthquake damage by estimating the near-surface velocity structure and developing land usage plans and intelligent building design. The number of microzonation studies increased in the last few years as induced seismicity becomes more relevant, even in low-risk areas. While of vital importance, especially in densely populated cities, most of the traditional techniques suffer from different shortcomings.
View Article and Find Full Text PDFIn seismology, an increased effort to observe all 12 degrees of freedom of seismic ground motion by complementing translational ground motion observations with measurements of strain and rotational motions could be witnessed in recent decades, aiming at an enhanced probing and understanding of Earth and other planetary bodies. The evolution of optical instrumentation, in particular large-scale ring laser installations, such as G-ring and ROMY (ROtational Motion in seismologY), and their geoscientific application have contributed significantly to the emergence of this scientific field. The currently most advanced, large-scale ring laser array is ROMY, which is unprecedented in scale and design.
View Article and Find Full Text PDFRotaphone-CY is a six-component short-period seismograph that is capable of the co-located recording of three translational (ground velocity) components along three orthogonal axes and three rotational (rotation rate) components around the three axes in one device. It is a mechanical sensor system utilizing records from elemental sensors (geophones) arranged in parallel pairs to derive differential motions in the pairs. The pairs are attached to a rigid frame that is anchored to the ground.
View Article and Find Full Text PDFInterest in measuring displacement gradients, such as rotation and strain, is growing in many areas of geophysical research. This results in an urgent demand for reliable and field-deployable instruments measuring these quantities. In order to further establish a high-quality standard for rotation and strain measurements in seismology, we organized a comparative sensor test experiment that took place in November 2019 at the Geophysical Observatory of the Ludwig-Maximilians University Munich in Fürstenfeldbruck, Germany.
View Article and Find Full Text PDFRecent progress in rotational sensor technology has made it possible to directly measure rotational ground-motion induced by seismic waves. When combined with conventional inertial seismometer recordings, the new sensors allow one to locally observe six degrees of freedom (6DOF) of ground-motion, composed of three orthogonal components of translational motion and three orthogonal components of rotational motion. The applications of such 6DOF measurements are manifold-ranging from wavefield characterization, separation, and reconstruction to the reduction of non-uniqueness in seismic inverse problems-and have the potential to revolutionize the way seismic data are acquired and processed.
View Article and Find Full Text PDFMost snow avalanches occur unobserved, which becomes particularly dramatic when human lives are involved. Seismological observations can be helpful to unravel time and dynamics of unseen events, like the deadly avalanche of January 18, 2017, that hit a Resort-hotel at Rigopiano in the Abruzzi (Italy). Particle motion analysis and spectrograms from data recorded by a close seismic broadband station, calculation of synthetic seismograms, as well as simulation of the flow, allowed us to construct the dynamics of the snow avalanche that buried alive 40 people, killing 29.
View Article and Find Full Text PDFMeasurements of artificial events can substantially confirm the data validity of constructed rotational sensors, as well as provide methods for simplifying the measurement process. The above task, especially with international cooperation, can provide full-field measurement results of the target object, which can deliver more significant data and sensor properties. The paper presents vertical rotational velocity recordings gathered during an international experiment that took place at the Geophysical Observatory of the Ludwig Maximilian University of Munich in Fürstenfeldbruck, Germany.
View Article and Find Full Text PDFAbsolute rotation rate sensing with extreme sensitivity requires a combination of several large scale gyroscopes in order to obtain the full vector of rotation. We report on the construction and operation of a four-component, tetrahedral laser gyroscope array as large as a five story building and situated in a near surface, underground laboratory. It is demonstrated that reconstruction of the full Earth rotation vector can be achieved with sub-arcsecond resolution over more than six weeks.
View Article and Find Full Text PDFHuman activity causes vibrations that propagate into the ground as high-frequency seismic waves. Measures to mitigate the coronavirus disease 2019 (COVID-19) pandemic caused widespread changes in human activity, leading to a months-long reduction in seismic noise of up to 50%. The 2020 seismic noise quiet period is the longest and most prominent global anthropogenic seismic noise reduction on record.
View Article and Find Full Text PDFThe AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km.
View Article and Find Full Text PDF