Symbiotic nitrogen fixation (SNF) has a high energetic cost for legume plants; legumes thus reduce SNF when soil N is available. The present study aimed to increase our understanding regarding the impacts of the two principal forms of available N in soils (ammonium and nitrate) on SNF. We continuously measured the SNF of Medicago truncatula under controlled conditions.
View Article and Find Full Text PDFIn most legume nodules, the di-nitrogen (N)-fixing rhizobia are present as organelle-like structures inside their root host cells. Many processes operate and interact within the symbiotic relationship between plants and nodules, including nitrogen (N)/carbon (C) metabolisms, oxygen flow through nodules, oxidative stress, and phosphorous (P) levels. These processes, which influence the regulation of N fixation and are finely tuned on a whole-plant basis, are extensively reviewed in this paper.
View Article and Find Full Text PDFNickel (Ni)-a component of urease and hydrogenase-was the latest nutrient to be recognized as an essential element for plants. However, to date there are no records of Ni deficiency for annual species cultivated under field conditions, possibly because of the non-appearance of obvious and distinctive symptoms, i.e.
View Article and Find Full Text PDFNitrogen fixation of Medicago truncatula is regulated by the nitrogen status of leaves through inducing a repeatedly occurring 24-h nodule activity rhythm that reduces per day nitrogen fixation. The hypotheses of the present study were that (1) long-term moderate whole-plant P deficiency in Medicago truncatula induces an according daily rhythm in nitrogenase activity comparable to that induced by nitrate application and (2), the changes in the nodule transcriptome that go along with a strong nitrogenase activity decline during the afternoon would be similar under P deficiency or after nitrate supply. The nodules of plants in a low P treatment developed a rhythmic pattern of activity that resembled the pattern following nitrate application.
View Article and Find Full Text PDFNitrogenase is an oxygen labile enzyme. Microaerobic conditions within the infected zone of nodules are maintained primarily by an oxygen diffusion barrier (ODB) located in the nodule cortex. Flexibility of the ODB is important for the acclimation processes of nodules in response to changes in external oxygen concentration.
View Article and Find Full Text PDFSymbiotic nitrogen fixation is a process of considerable economic, ecological and scientific interest. The central enzyme nitrogenase reduces H(+) alongside N2 , and the evolving H2 allows a continuous and non-invasive in vivo measurement of nitrogenase activity. The objective of this study was to show that an elaborated set-up providing such measurements for periods as long as several weeks will produce specific insight into the nodule activity's dependence on environmental conditions and genotype features.
View Article and Find Full Text PDFLegume nodules are plant tissues with an exceptionally high concentration of phosphorus (P), which, when there is scarcity of P, is preferentially maintained there rather than being allocated to other plant organs. The hypothesis of this study was that nodules are affected before the P concentration in the organ declines during whole-plant P depletion. Nitrogen (N₂) fixation and P concentration in various organs were monitored during a whole-plant P-depletion process in Medicago truncatula.
View Article and Find Full Text PDFDrought negatively impacts symbiotic nitrogen fixation (SNF) in Cicer arietinum L. (chickpea), thereby limiting yield potential. Understanding how drought affects chickpea nodulation will enable the development of strategies to biotechnologically engineer chickpea varieties with enhanced SNF under drought conditions.
View Article and Find Full Text PDFLegumes match the nodule number to the N demand of the plant. When a mutation in the regulatory mechanism deprives the plant of that ability, an excessive number of nodules are formed. These mutants show low productivity in the fields, mainly due to the high carbon burden caused through the necessity to supply numerous nodules.
View Article and Find Full Text PDFThe aim of the present study was to test the hypothesis that the higher nodule amino acid content induced under certain treatments may play a role in the N-feedback regulation of nitrogenase (EC 1.18.6.
View Article and Find Full Text PDFThe preparation of racemic or enantioenriched propane-1,2-diol from dilactides, oligolactides, or poly-L-lactic acid (PLLA) is described. The transformation is carried out as tandem reactions in MeOH, covering hydrolysis and subsequent hydrogenation by using copper chromite as a catalyst. The starting material present undesired side products of the PLLA synthesis or PLLA waste.
View Article and Find Full Text PDFThe mechanism through which nitrate reduces the activity of legume nodules is controversial. The objective of the study was to follow Medicago truncatula nodule activity after nitrate provision continuously and to identify molecular mechanisms, which down-regulate the activity of the nodules. Nodule H2 evolution started to decline after about 4 h of nitrate application.
View Article and Find Full Text PDFChickpea (Cicer arietinum) is an important pulse crop in many countries in the world. The symbioses between chickpea and Mesorhizobia, which fix N₂ inside the root nodules, are of particular importance for chickpea's productivity. With the aim of enhancing symbiotic efficiency in chickpea, we compared the symbiotic efficiency of C-15, Ch-191 and CP-36 strains of Mesorhizobium ciceri in association with the local elite chickpea cultivar 'Bivanij' as well as studied the mechanism underlying the improvement of N₂ fixation efficiency.
View Article and Find Full Text PDFMedicago truncatula is an important model plant for characterization of P deficiency on leguminous plants at the physiological and molecular levels. Growth optimization of this plant with regard to P supply is the first essential step for elucidation of the role of P in regulation of nodulation. Hence, a study was carried out to address the growth pattern of M.
View Article and Find Full Text PDFPhosphorus (P)-deficiency is a major abiotic stress that limits legume growth in many types of soils. The relationship between Medicago and Sinorhizobium, is known to be affected by different environmental conditions. Recent reports have shown that, in combination with S.
View Article and Find Full Text PDFNitrogen fixation in legumes is downregulated through a whole plant N feedback mechanism, for example, when under stress. This mechanism is probably triggered by the impact of shoot-borne, phloem-delivered compounds. However, little is known about any whole-plant mechanism that might upregulate nitrogen fixation, for example, under N deficiency.
View Article and Find Full Text PDFReplacement of N(2) by argon in the air around nodules directs nitrogenase electron flow in its total onto H(+) resulting in increased nodule H(2) evolution (total nitrogenase activity (TNA)). However, argon application induces a so-called argon-induced decline in nitrogenase activity (Ar-ID) connected with decreased nodule oxygen permeability. Consequently, TNA measurements tend to underestimate total nitrogenase activity.
View Article and Find Full Text PDFThe objective of this study was to assess whether a whole plant N-feedback regulation impact on nitrogen fixation in Medicago truncatula would manifest itself in shifts of the composition of the amino acid flow from shoots to nodules. Detected shifts in the phloem amino acid composition were supposed to be mimicked through artificial phloem feeding and concomitant measurement of nodule activity. The amino acid composition of the phloem exudates was analyzed from plants grown under the influence of treatments (limiting P supply or application of combined nitrogen) known to reduce nodule nitrogen fixation activity.
View Article and Find Full Text PDFNodule CO2 fixation is of pivotal importance for N2 fixation. The process provides malate for bacteroids and oxaloacetate for nitrogen assimilation. The hypothesis of the present paper was that grain legume nodules would adapt to higher plant N demand and more restricted carbon availability at pod formation through increased nodule CO2 fixation and a more efficient N2 fixation.
View Article and Find Full Text PDFMedicago truncatula (Gaertn.) (barrel medic) serves as a model legume in plant biology. Numerous studies have addressed molecular aspects of the biology of M.
View Article and Find Full Text PDFNodule CO2 fixation via PEPC provides malate for bacteroids and oxaloacetate for N assimilation. The process is therefore of central importance for efficient nitrogen fixation. Nodule CO2 fixation is known to depend on external CO2 concentration.
View Article and Find Full Text PDFThe objective of the present study was to elucidate whether remobilized N from lower leaves is involved in causing the drop in N(2) fixation during pod-filling in common bean (Phaseolus vulgaris L). Moreover, we addressed the question of whether remobilized N from lower leaves would reach the nodules. Nodulated common bean plants were grown in a growth chamber in quartz sand.
View Article and Find Full Text PDFBackground And Aims: White lupin is highly adapted to growth in a low-P environment. The objective of the present study was to evaluate whether white lupin grown under P-stress has adaptations in nodulation and N2 fixation that facilitate continued functioning.
Methods: Nodulated plants were grown in silica sand supplied with N-free nutrient solution containing 0 to 0.
Nodulated alfalfa (Medicago sativa L. cv. Saranac) plants were grown in hydroponics at P-sufficient and P-deficient supply levels.
View Article and Find Full Text PDFVarious legume species show a marked decline in N2 fixation during pod-filling. The objective of this study was to clarify whether this is a result of impaired nodule assimilate supply or whether re-moblised N from senescing lower leaves initiates the phenomenon through an N-feedback impact. In model experiments on pea and broad bean plants during vegetative and reproductive growth, 30 or 60% of green leaves were either excised or individually darkened, thus removing the same photosynthetic capacity yet allowing N to be re-mobilised from darkened leaves.
View Article and Find Full Text PDF