Publications by authors named "Joachim Rosenbusch"

Early forebrain patterning entails the correct regional designation of the neuroepithelium, and appropriate specification, generation, and distribution of neural cells during brain development. Specific signaling and transcription factors are known to tightly regulate patterning of the dorsal telencephalon to afford proper structural/functional cortical arealization and morphogenesis. Nevertheless, whether and how changes of the chromatin structure link to the transcriptional program(s) that control cortical patterning remains elusive.

View Article and Find Full Text PDF

Increase in the size of human neocortex―acquired in evolution―accounts for the unique cognitive capacity of humans. This expansion reflects the evolutionarily enhanced proliferative ability of basal progenitors (BPs), including the basal radial glia and basal intermediate progenitors (bIPs) in mammalian cortex, which may have been acquired through epigenetic alterations in BPs. However, how the epigenome in BPs differs across species is not known.

View Article and Find Full Text PDF

Radial neuronal migration is a key neurodevelopmental event indispensable for proper cortical laminar organization. Cortical neurons mainly use glial fiber guides, cell adhesion dynamics, and cytoskeletal remodeling, among other discrete processes, to radially trek from their birthplace to final layer positions. Dysregulated radial migration can engender cortical mis-lamination, leading to neurodevelopmental disorders.

View Article and Find Full Text PDF

Intermediate progenitor cells (IPCs) are neocortical neuronal precursors. Although IPCs play crucial roles in corticogenesis, their molecular features remain largely unknown. In this study, we aimed to characterize the molecular profile of IPCs.

View Article and Find Full Text PDF

Cortical morphogenesis entails several neurobiological events, including proliferation and differentiation of progenitors, migration of neuroblasts, and neuronal maturation leading to functional neural circuitry. These neurodevelopmental processes are delicately regulated by many factors. Endosomal SNAREs have emerged as formidable modulators of neuronal growth, aside their well-known function in membrane/vesicular trafficking.

View Article and Find Full Text PDF

Fine-tuned gene expression is crucial for neurodevelopment. The gene expression program is tightly controlled at different levels, including RNA decay. N-methyladenosine (m6A) methylation-mediated degradation of RNA is essential for brain development.

View Article and Find Full Text PDF

Chromatin remodeling factor BAF155 is an important regulator of many biological processes. As a core and scaffold subunit of the BAF (SWI/SNF-like) complex, BAF155 is capable of regulating the stability and function of the BAF complex. The spatiotemporal expression of BAF155 during embryogenesis is essential for various aspects of organogenesis, particularly in the brain development.

View Article and Find Full Text PDF

The abundance of basal progenitors (BPs), basal radial glia progenitors (bRGs) and basal intermediate progenitors (bIPs), in primate brain has been correlated to the high degree of cortical folding. Here we examined the role of BAF155, a subunit of the chromatin remodeling BAF complex, in generation of cortical progenitor heterogeneity. The conditional deletion of BAF155 led to diminished bIP pool and increased number of bRGs, due to delamination of apical RGs.

View Article and Find Full Text PDF

During early cortical development, neural stem cells (NSCs) divide symmetrically to expand the progenitor pool, whereas, in later stages, NSCs divide asymmetrically to self-renew and produce other cell types. The timely switch from such proliferative to differentiative division critically determines progenitor and neuron numbers. However, the mechanisms that limit proliferative division in late cortical development are not fully understood.

View Article and Find Full Text PDF

The generation of individual neurons (neurogenesis) during cortical development occurs in discrete steps that are subtly regulated and orchestrated to ensure normal histogenesis and function of the cortex. Notably, various gene expression programs are known to critically drive many facets of neurogenesis with a high level of specificity during brain development. Typically, precise regulation of gene expression patterns ensures that key events like proliferation and differentiation of neural progenitors, specification of neuronal subtypes, as well as migration and maturation of neurons in the developing cortex occur properly.

View Article and Find Full Text PDF

The postnatal mammalian olfactory epithelium (OE) represents a major aspect of the peripheral olfactory system. It is a pseudostratified tissue that originates from the olfactory placode and is composed of diverse cells, some of which are specialized receptor neurons capable of transducing odorant stimuli to afford the perception of smell (olfaction). The OE is known to offer a tractable miniature model for studying the systematic generation of neurons and glia that typify neural tissue development.

View Article and Find Full Text PDF

The ATP-dependent BRG1/BRM associated factor (BAF) chromatin remodeling complexes are crucial in regulating gene expression by controlling chromatin dynamics. Over the last decade, it has become increasingly clear that during neural development in mammals, distinct ontogenetic stage-specific BAF complexes derived from combinatorial assembly of their subunits are formed in neural progenitors and post-mitotic neural cells. Proper functioning of the BAF complexes plays critical roles in neural development, including the establishment and maintenance of neural fates and functionality.

View Article and Find Full Text PDF

Neurogenesis is a key developmental event through which neurons are generated from neural stem/progenitor cells. Chromatin remodeling BAF (mSWI/SNF) complexes have been reported to play essential roles in the neurogenesis of the central nervous system. However, whether BAF complexes are required for neuron generation in the olfactory system is unknown.

View Article and Find Full Text PDF

The multi-subunit chromatin-remodeling SWI/SNF (known as BAF for Brg/Brm-associated factor) complexes play essential roles in development. Studies have shown that the loss of individual BAF subunits often affects local chromatin structure and specific transcriptional programs. However, we do not fully understand how BAF complexes function in development because no animal mutant had been engineered to lack entire multi-subunit BAF complexes.

View Article and Find Full Text PDF

BAF (Brg/Brm-associated factors) complexes play important roles in development and are linked to chromatin plasticity at selected genomic loci. Nevertheless, a full understanding of their role in development and chromatin remodeling has been hindered by the absence of mutants completely lacking BAF complexes. Here, we report that the loss of BAF155/BAF170 in double-conditional knockout (dcKO) mice eliminates all known BAF subunits, resulting in an overall reduction in active chromatin marks (H3K9Ac), a global increase in repressive marks (H3K27me2/3), and downregulation of gene expression.

View Article and Find Full Text PDF

Fusion between membranes is mediated by specific SNARE complexes. Here we report that fibroblasts survive the absence of the trans-Golgi network/early endosomal SNARE vti1a and the late endosomal SNARE vti1b with intact organelle morphology and minor trafficking defects. Because vti1a and vti1b are the only members of their SNARE subclass and the yeast homolog Vti1p is essential for cell survival, these data suggest that more distantly related SNAREs acquired the ability to function in endosomal traffic during evolution.

View Article and Find Full Text PDF

Neurotrophic factors are well-recognized extracellular signaling molecules that regulate neuron development including neurite growth, survival and maturation of neuronal phenotypes in the central and peripheral nervous system. Previous studies have suggested that TGF-beta plays a key role in the regulation of neuron survival and death and potentiates the neurotrophic activity of several neurotrophic factors, most strikingly of GDNF. To test the physiological relevance of this finding, TGF-beta2/GDNF double mutant (d-ko) mice were generated.

View Article and Find Full Text PDF

Aberrant reorganization of hippocampal mossy fibers occurs in human temporal lobe epilepsy and rodent epilepsy models. We generated a mouse model showing massive late-onset aberrant mossy fiber sprouting in the adult hippocampus. The mutation in this mouse model derives from an intronic insertion of transgene DNA in the mouse PLC-beta1 gene (PLC-beta 1(-/-)(TC) mutation) leading to a splice mutation of the PLC-beta 1 gene and a complete loss of downstream PLC-beta 1 expression.

View Article and Find Full Text PDF