Background: Remimazolam is a new benzodiazepine for procedural sedation and general anaesthesia. The aim of this study was to characterise its pharmacokinetic properties and safety in renally and hepatically impaired subjects.
Methods: Two separate trials were conducted in patients with hepatic (n=11) or renal impairment (n=11) compared with matched healthy subjects (n=9 and n=12, respectively).
Remimazolam is an ultra-short acting benzodiazepine under development for procedural sedation and general anesthesia. Population pharmacokinetic analysis (PopPK) was conducted for remimazolam with arterial and venous samples previously, but results were limited by arterial-venous concentration differences and inaccurate central volume of distribution (V1) estimates. A new model was developed to describe covariate effects after accounting for arterial-venous differences.
View Article and Find Full Text PDFBackground And Objectives: Remimazolam is a new ultra-short-acting benzodiazepine currently being developed for intravenous use in procedural sedation, general anaesthesia, and intensive care unit sedation. Benzodiazepines represent a drug class associated with drug-facilitated sexual assaults, especially in combination with alcohol. Two clinical trials were designed to evaluate the oral bioavailability and pharmacokinetics/pharmacodynamics of remimazolam and to assess the potential for remimazolam misuse in drug-facilitated sexual assaults via oral ingestion.
View Article and Find Full Text PDFStudy Objective: To evaluate factors affecting variability in response to remimazolam in general anesthesia.
Design: Plasma concentration-time data from 11 Phase 1-3 clinical trials were pooled for the population pharmacokinetic (popPK) analysis and concentration-bispectral index (BIS) data were pooled from 8 trials for popPK-PD analysis. A 3-compartment model with allometric exponents on clearance and volume described remimazolam concentrations over time.
Pharmacokinetic and pharmacodynamic models estimate the potency of antiviral agents but do not capture viral and immunologic factors that drive the natural dynamics of infection. We designed a mathematical model that synthesizes pharmacokinetics, pharmacodynamics, and viral pathogenesis concepts to simulate the activity of pritelivir, a DNA helicase-primase inhibitor that targets herpes simplex virus. Our simulations recapitulate detailed viral kinetic shedding features in five dosage arms of a phase 2 clinical trial.
View Article and Find Full Text PDFEur J Drug Metab Pharmacokinet
December 2007
Tapentadol is a novel, centrally acting oral analgesic with a dual mode of action that has demonstrated efficacy in preclinical and clinical models of pain relief. The present study investigated and characterized the absorption, metabolism, and excretion of tapentadol in humans. Four healthy male subjects received a single 100-mg oral dose of 3-[14C]-labeled tapentadol HCl for evaluation of the pharmacokinetics of the drug and the excretion balance of radiocarbon.
View Article and Find Full Text PDFTramadol analgesia results from a monoaminergic effect by tramadol itself and an opioid effect of its metabolite (+)-M1 formed by O-demethylation of tramadol by CYP2D6. In this study we sought to determine the impact of (+)-M1 on the analgesic effect of tramadol evaluated by experimental pain models. The effect of an IV injection of 100 mg tramadol on experimental pain was studied 15-90 min after dosing in volunteers, 10 extensive metabolizers with CYP2D6 and 10 poor metabolizers without CYP2D6 in 2 placebo-controlled trials.
View Article and Find Full Text PDF