Publications by authors named "Joachim Burghartz"

Electrophysiological (EP) mapping catheters are medical equipment, which are widely used to diagnose and treat atrial fibrillation. The electrophysiology signals are sensed by the catheter's electrodes, for which a large electrode count becomes more and more essential because of the demand for a higher local resolution. A drawback of the large electrode count is the effort to pass through and to integrate the wires inside the catheter shaft.

View Article and Find Full Text PDF

Plasma-enhanced atomic layer deposition (PEALD) is utilized to improve the barrier properties of an organic chip-film patch (CFP) when it is used as an implant to prevent moisture and ions from migrating into the embedded electronic circuits. For this purpose, surface condition and material properties of eight modifications of AlO-TiO nanolaminates sequentially deposited on polyimide PI-2611 films are evaluated in detail. The effect of stress-induced warpage of the deposited AlO-TiO on the wafer level is calculated with the Stoney equation and reveals higher tensile stress values while increasing the thickness of AlO-TiO nanolaminates from 20 up to 80 nm.

View Article and Find Full Text PDF

One of the circuit topologies for the implementation of unipolar integrated circuits (circuits that use either p-channel or n-channel transistors, but not both) is the zero- architecture. Zero- circuits often provide excellent static performance (large small-signal gain and large noise margins), but they suffer from the large signal delay imposed by the load transistor. To address this limitation, we have used electron-beam lithography to fabricate zero- circuits based on organic transistors with channel lengths as small as 120 nm on flexible polymeric substrates.

View Article and Find Full Text PDF

This paper describes a realization of an electrophysiology (EP) catheter with 96 electrodes which requires no electrical wiring to the outside by relying on an optical link for both power supply and data communication. The catheter tip is constructed from a liquid crystal polymer (LCP) material. It features 96 gold electrodes, which are uniformly arranged along an expandable basket.

View Article and Find Full Text PDF

The primary driver for the development of organic thin-film transistors (TFTs) over the past few decades has been the prospect of electronics applications on unconventional substrates requiring low-temperature processing. A key requirement for many such applications is high-frequency switching or amplification at the low operating voltages provided by lithium-ion batteries (~3 V). To date, however, most organic-TFT technologies show limited dynamic performance unless high operating voltages are applied to mitigate high contact resistances and large parasitic capacitances.

View Article and Find Full Text PDF

The contact resistance in organic thin-film transistors (TFTs) is the limiting factor in the development of high-frequency organic TFTs. In devices fabricated in the inverted (bottom-gate) device architecture, staggered (top-contact) organic TFTs have usually shown or are predicted to show lower contact resistance than coplanar (bottom-contact) organic TFTs. However, through comparison of organic TFTs with different gate-dielectric thicknesses based on the small-molecule organic semiconductor 2,9-diphenyl-dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene, we show the potential for bottom-contact TFTs to have lower contact resistance than top-contact TFTs, provided the gate dielectric is sufficiently thin and an interface layer such as pentafluorobenzenethiol is used to treat the surface of the source and drain contacts.

View Article and Find Full Text PDF

Low-voltage p-channel and n-channel organic transistors with channel lengths down to 0.5 μm using four small-molecule semiconductors and ultra-thin dielectrics based on two different phosphonic acid monolayers are fabricated on plastic substrates and studied in terms of effective mobility, intrinsic mobility and contact resistance. For the optimum materials combination, flexible complementary circuits have signal delays of 3.

View Article and Find Full Text PDF

We present a rigorous approach for designing a highly efficient coupling between single mode optical fibers and silicon nanophotonic waveguides based on diffractive gratings. The structures are fabricated on standard SOI wafers in a cost-effective CMOS process flow. The measured coupling efficiency reaches -1.

View Article and Find Full Text PDF

Bottom-gate, top-contact organic thin-film transistors (TFTs) with excellent static characteristics (on/off ratio: 10(7) ; intrinsic mobility: 3 cm(2) (V s)(-1) ) and fast unipolar ring oscillators (signal delay as short as 230 ns per stage) are fabricated. The significant contribution of the transfer length to the relation between channel length, contact length, contact resistance, effective mobility, and cutoff frequency of the TFTs is theoretically and experimentally analyzed.

View Article and Find Full Text PDF

A 664 x 664 element Active Pixel image Sensor (APS) with integrated analog signal processing, full frame synchronous shutter and random access for applications in star sensors is presented and discussed. A thick vertical diode array in Thin Film on CMOS (TFC) technology is explored to achieve radiation hardness and maximum fill factor.

View Article and Find Full Text PDF