Altered transcriptional and epigenetic regulation of brain cell types may contribute to cognitive changes with advanced age. Using single-nucleus multi-omic DNA methylation and transcriptome sequencing (snmCT-seq) in frontal cortex from young adult and aged donors, we found widespread age- and sex-related variation in specific neuron types. The proportion of inhibitory SST- and VIP-expressing neurons was reduced in aged donors.
View Article and Find Full Text PDFA repeat expansion in the C9orf72 (C9) gene is the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we investigate single nucleus transcriptomics (snRNA-seq) and epigenomics (snATAC-seq) in postmortem motor and frontal cortices from C9-ALS, C9-FTD, and control donors. C9-ALS donors present pervasive alterations of gene expression with concordant changes in chromatin accessibility and histone modifications.
View Article and Find Full Text PDFThe mechanism of negative group delay (NGD) is used to understand the anticipatory capability of a retina. Experiments with retinas from bullfrogs are performed to compare with the predictions of the NGD model. In particular, whole field stochastic stimulations with various autocorrelation times are used to probe anticipatory responses from the retina.
View Article and Find Full Text PDF