Neurological disorders, encompassing conditions such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), pose a significant global health challenge, affecting millions worldwide. With an aging population and increased life expectancy, the prevalence of these disorders is escalating rapidly, leading to substantial economic burdens exceeding trillions of dollars annually. Animal models play a crucial role in understanding the underlying mechanisms of these disorders and developing effective treatments.
View Article and Find Full Text PDFAcrylic resins are widely used as the main components in removable orthodontic appliances. However, poor oral hygiene and maintenance of orthodontic appliances provide a suitable environment for the growth of pathogenic microorganisms. In this study, strontium-modified phosphate-based glass (Sr-PBG) was added to orthodontic acrylic resin at 0% (control), 3.
View Article and Find Full Text PDFThe electronic device, with its biocompatibility, biodegradability, and ease of fabrication process, shows great potential to embed into health monitoring and hardware data security systems. Herein, polyvinylpyrrolidone (PVP) biopolymer is presented as an active layer, electrochemically active magnesium (Mg) as a metal electrode, and chitosan-based substrate (CHS) to fabricate biocompatible and biodegradable physically transient neuromorphic device (W/Mg/PVP/Mg/CHS). The I-V curve of device is non-volatile bipolar in nature and shows a unique compliance-induced multilevel RESET-dependent-SET behavior while sweeping the compliance current from a few microamperes to milliamperes.
View Article and Find Full Text PDFEpidermal growth factor (EGF) has been used in wound management and regenerative medicine since the late 1980s. It has been widely utilized for a long time and still is because of its excellent tolerability and efficacy. EGF has many applications in tissue engineering, cancer therapy, lung diseases, gastric ulcers, and wound healing.
View Article and Find Full Text PDFFive types of odor-emitting exhaust gases from medical waste were selected, and their adsorption capacity and desorption efficiency were investigated using activated carbon. The selected gases included polar gases (hydrogen sulfide (H2S) and ammonia (NH3)) and non-polar gases (acetaldehyde (AA), methyl mercaptan (MM), and trimethylamine (TMA))). Commercial activated carbon with a specific surface area of 2276 m2/g was used as the adsorbent.
View Article and Find Full Text PDFOur study aimed to develop a self-microemulsifying drug delivery system for the poorly aqueous-soluble drug Coenzyme Q, to improve the dissolution and the oral bioavailability. Excipients were selected based on their Coenzyme Q solubility, and their concentrations were set for the optimization of the microemulsion by using a D-optimal mixture design to achieve a minimum droplet size and a maximum solubility of Coenzyme Q within 15 min. The optimized formulation was composed of an oil (omega-3; 38.
View Article and Find Full Text PDFIntroduction: The buccal route has been considered an attractive alternative delivery route for injectable formulations. Cell-penetrating peptides (CPPs) are gaining increased attention for their cellular uptake and tissue permeation effects. This study was aimed to evaluate the in vitro and ex vivo permeation-enhancing effect of penetratin-conjugated liposomes for salmon calcitonin (sCT) in TR146 human buccal cells and porcine buccal tissues.
View Article and Find Full Text PDFImproving the aqueous solubility of poorly soluble compounds have been a major issue in the pharmaceutical industry. In the present study, binary amorphous solid dispersions (SDs) of Coenzyme Q10 (CoQ), a biopharmaceutics classification system (BCS) II compound and Soluplus were prepared to enhance the solubility and pharmacokinetic properties compared to crystalline CoQ. SDs were prepared with different ratios of CoQ and Soluplus (1:3, 1:5, and 1:7) using spray drying technology, and the physicochemical properties of the SDs were evaluated.
View Article and Find Full Text PDFDespite many ongoing and innovative approaches, there are still formidable challenges in the clinical translation of oral peptide drugs into marketable products due to their low absorption and poor bioavailability. Herein, a novel nanocarrier platform was developed that employs a hydrophobic ion-pairing (HIP) of model peptide (insulin) and the anionic bile salt (sodium glycodeoxycholate, SGDC), and markedly improves intestinal absorption via the bile acid pathway. The developed HIP-nanocomplexes (C1 and C2) were optimized, characterized, and in vitro and in vivo evaluation were performed to assess oral efficacy of these system.
View Article and Find Full Text PDFBackground: The clinical use of therapeutic peptides has been limited because of their inefficient delivery approaches and, therefore, inadequate delivery to target sites. Buccal administration of therapeutic peptides offers patients a potential alternative to the current invasive routes of administration.
Purpose: The aim of the study was to fabricate hydrophobic ion-pairing (HIP)-nanocomplexes (C1 and C2) utilizing anionic bile salts and cationic peptides, and to assess their permeability across TR146 buccal cell layers and porcine buccal tissue.
Buccal drug delivery is a suitable alternative to invasive routes of drug administration. The buccal administration of insulin for the management of diabetes has received substantial attention worldwide. The main aim of this study was to develop and characterize elastic liposomes and assess their permeability across porcine buccal tissues.
View Article and Find Full Text PDFBuccal tissues are considered one of the potential alternative delivery route because of fast drug absorption and onset of action due to high vascularization and a non-keratinized epithelial membrane. In this study, the effect of Penetratin on the permeation of salmon calcitonin (sCT), a model macromolecular peptide drug, through TR146 buccal cells and porcine buccal tissues has been evaluated. To observe permeation profile of sCT, TR146 buccal cells were treated with Alexa 647 conjugated sCT (Alexa 647-sCT) with different concentrations of fluorescein isothiocyanate -labeled Penetratin (FITC-Penetratin) ranging from 0 to 40 μM, and analyzed using flow cytometry and confocal laser scanning microscopy.
View Article and Find Full Text PDF3D printing is a method of rapid prototyping and manufacturing in which materials are deposited onto one another in layers to produce a three-dimensional object. Although 3D printing was developed in the 1980s and the technology has found widespread industrial applications for production from automotive parts to machine tools, its application in pharmaceutical area is still limited. However, the potential of 3D printing in the pharmaceutical industry is now being recognized.
View Article and Find Full Text PDFFluorescent proteins, such as the green fluorescent protein, are used for detection of cellular components and events. However, green fluorescent protein and its derivatives have limited usage under anaerobic conditions and require a long maturation time. On the other hand, the NADPH-dependent blue fluorescent protein (BFP) without oxidative modification of residues is instantly functional in both aerobic and anaerobic systems.
View Article and Find Full Text PDFWe prepared mineral oil-based emulsion adjuvants by employing simple self-emulsifying drug delivery system (SEDDS). Mineral oil emulsions (3%, 5%, and 7%) were prepared using deionized water and C-971P NF and C-940 grade carbomer solutions with concentrations 0.01% (w/v) and 0.
View Article and Find Full Text PDFLow aqueous solubility of drug causes difficulties in preparation and inconvenience of administration. Polymeric micelles of fluorometholone (FML) using solid dispersion technique were prepared to develop an eye drop formulation with enhanced water solubility. Solid dispersions of FML were prepared at various FML:Soluplus / ratios using solvent evaporation method.
View Article and Find Full Text PDFBackground: Buccal delivery of insulin is still a challenging issue for the researchers due to the presence of permeability barrier (buccal mucosa) in the buccal cavity. The main objective of this study was to investigate the safety, effectiveness, and potential of various liposomes containing different bile salts to improve the permeation of insulin across in vitro TR146 buccal cell layers.
Methods: Elastic bilosomes containing soy lecithin and bile salt edge activators (sodium cholate [SC], sodium taurocholate [STC], sodium glycocholate [SGC], sodium deoxyglycocholate [SDGC], or sodium deoxytaurocholate [SDTC]) were fabricated by thin-film hydration method.
Transdermal drug administration presents several advantages and it is therefore favorable as an alternative drug delivery route. However, transdermal delivery of biopharmaceutical drugs is made difficult by the skin barrier. Microneedle application and iontophoresis are strategies which can be used to overcome this barrier.
View Article and Find Full Text PDFVaccination is an effective approach to prevent the consequences of infectious diseases. Vaccines strengthen immunity and make individuals resistant to infections with pathogens. Although conventional vaccines are highly immunogenic, they are associated with some safety issues.
View Article and Find Full Text PDFPurpose: To evaluate the feasibility of iontophoresis and the combination effects with chemical enhancers on in vivo hypocalcemic effect of transbuccally delivered salmon calcitonin (sCT).
Methods: N-acetyl-L-cysteine (NAC), sodium deoxyglycocholate (SDGC), and ethanol were used as chemical enhancers; and 0.5 mA/cm(2) fixed electric current was employed as a physical enhancer.
Surface-modified solid lipid nanoparticles (SLNs) containing retinyl palmitate (Rpal) were prepared by the hot-melt method using Gelucire 50/13(®) and Precirol ATO5(®). Dicetyl phosphate (DCP) was added to negatively charge the surfaces of the SLNs and thereby enhance the skin distribution properties of Rpal. In vitro skin permeation and in vivo anti-aging studies were performed using SLNs dispersed in a hydrogel.
View Article and Find Full Text PDFWe have previously demonstrated that heat shock could induce expression of matrix metalloproteinases (MMPs) in skin cells. These results implicated that chronic heat treatment may cause skin wrinkles. Therefore, in the present study, we investigated the effects of chronic heat treatment (43 °C, 30 min, 3 times/week, 6 weeks) on wrinkle formation in skin of hairless mice.
View Article and Find Full Text PDFWe encapsulated recombinant human epidermal growth factor (rhEGF) into nano-liposomes (NLs) system for topical delivery. The rhEGF-loaded NLs were prepared using a high pressure homogenization method. Morphology and overall particle distribution of NLs were investigated using transmission electron microscopy (TEM) and high resolution microscope (CytoViva™).
View Article and Find Full Text PDFBackground: Thrombospondin-1 (TSP-1) is a matricellular glycoprotein and recognized as an inhibitor of angiogenesis and an activator of transforming growth factor-beta (TGF-beta). Although TSP-1 expression has been shown to be regulated by various stimuli including UV in some types of cell, more work need to be done to understand the regulation of TSP-1 expression and its functional significances in many other types of cell.
Objective: In this study, we investigated the effect of UV on TSP-1 expression in human skin dermis and dermal fibroblasts and the role of TSP-1 on the type I procollagen expression after UV exposure.