Luminal A (hormone receptor-positive) breast cancer constitutes 70% of total breast cancer patients. In an attempt to develop a targeted therapeutic for this cancer indication, we have identified and characterized Glial cell line-Derived Neurotrophic Factor (GDNF) Family Receptor Alpha 1 (GFRA1) antibody-drug conjugates (ADC) using a cleavable valine-citrulline-MMAE (vcMMAE) linker-payload. RNAseq and IHC analysis confirmed the abundant expression of GFRA1 in luminal A breast cancer tissues, whereas minimal or no expression was observed in most normal tissues.
View Article and Find Full Text PDFBispecific antibodies offer a clinically validated platform for drug discovery. In generating functionally active bispecific antibodies, it is necessary to identify a unique parental antibody pair to merge into a single molecule. However, technologies that allow high-throughput production of bispecific immunoglobulin Gs (BsIgGs) for screening purposes are limited.
View Article and Find Full Text PDFEosinophilic inflammation and Th2 cytokine production are central to the pathogenesis of asthma. Agents that target either eosinophils or single Th2 cytokines have shown benefits in subsets of biomarker-positive patients. More broadly effective treatment or disease-modifying effects may be achieved by eliminating more than one inflammatory stimulator.
View Article and Find Full Text PDFColorectal cancer remains a major unmet medical need, prompting large-scale genomics efforts in the field to identify molecular drivers for which targeted therapies might be developed. We previously reported the identification of recurrent translocations in R-spondin genes present in a subset of colorectal tumours. Here we show that targeting RSPO3 in PTPRK-RSPO3-fusion-positive human tumour xenografts inhibits tumour growth and promotes differentiation.
View Article and Find Full Text PDFCancer stem cells (CSCs) are hypothesized to actively maintain tumors similarly to how their normal counterparts replenish differentiated cell types within tissues, making them an attractive therapeutic target for the treatment of cancer. Because most CSC markers also label normal tissue stem cells, it is unclear how to selectively target them without compromising normal tissue homeostasis. We evaluated a strategy that targets the cell surface leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5), a well-characterized tissue stem cell and CSC marker, with an antibody conjugated to distinct cytotoxic drugs.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) is the most common cause of congenital virus infection. Congenital HCMV infection occurs in 0.2-1% of all births, and causes birth defects and developmental abnormalities, including sensorineural hearing loss and developmental delay.
View Article and Find Full Text PDFMulti-transmembrane proteins are especially difficult targets for antibody generation largely due to the challenge of producing a protein that maintains its native conformation in the absence of a stabilizing membrane. Here, we describe an immunization strategy that successfully resulted in the identification of monoclonal antibodies that bind specifically to extracellular epitopes of a 12 transmembrane protein, multi-drug resistant protein 4 (MRP4). These monoclonal antibodies were developed following hydrodynamic tail vein immunization with a cytomegalovirus (CMV) promoter-based plasmid expressing MRP4 cDNA and were characterized by flow cytometry.
View Article and Find Full Text PDFHepatitis C virus (HCV) infection is a major cause of liver disease and hepatocellular carcinoma. Glycan shielding has been proposed to be a mechanism by which HCV masks broadly neutralizing epitopes on its viral glycoproteins. However, the role of altered glycosylation in HCV resistance to broadly neutralizing antibodies is not fully understood.
View Article and Find Full Text PDFReceptor-interacting protein kinase 4 (RIPK4) is required for epidermal differentiation and is mutated in Bartsocas-Papas syndrome. RIPK4 binds to protein kinase C, but its signaling mechanisms are largely unknown. Ectopic RIPK4, but not catalytically inactive or Bartsocas-Papas RIPK4 mutants, induced accumulation of cytosolic β-catenin and a transcriptional program similar to that caused by Wnt3a.
View Article and Find Full Text PDFCanonical Wnt signaling is controlled intracellularly by the level of β-catenin protein, which is dependent on Axin scaffolding of a complex that phosphorylates β-catenin to target it for ubiquitylation and proteasomal degradation. This function of Axin is counteracted through relocalization of Axin protein to the Wnt receptor complex to allow for ligand-activated Wnt signaling. AXIN1 and AXIN2 protein levels are regulated by tankyrase-mediated poly(ADP-ribosyl)ation (PARsylation), which destabilizes Axin and promotes signaling.
View Article and Find Full Text PDFThe proto-oncogenes ETV1, ETV4 and ETV5 encode transcription factors in the E26 transformation-specific (ETS) family, which includes the most frequently rearranged and overexpressed genes in prostate cancer. Despite being critical regulators of development, little is known about their post-translational regulation. Here we identify the ubiquitin ligase COP1 (also known as RFWD2) as a tumour suppressor that negatively regulates ETV1, ETV4 and ETV5.
View Article and Find Full Text PDFTim-4 is a phosphatidylserine (PS) receptor that is expressed on various macrophage subsets. It mediates phagocytosis of apoptotic cells by peritoneal macrophages. The in vivo functions of Tim-4 in phagocytosis and immune responses, however, are still unclear.
View Article and Find Full Text PDFIt has been recently reported that treatment with an anti-placenta growth factor (PlGF) antibody inhibits metastasis and primary tumor growth. Here we show that, although anti-PlGF treatment inhibited wound healing, extravasation of B16F10 cells, and growth of a tumor engineered to overexpress the PlGF receptor (VEGFR-1), neutralization of PlGF using four novel blocking antibodies had no significant effect on tumor angiogenesis in 15 models. Also, genetic ablation of the tyrosine kinase domain of VEGFR-1 in the host did not result in growth inhibition of the anti-VEGF-A sensitive or resistant tumors tested.
View Article and Find Full Text PDFHedgehog (Hh) signaling in vertebrates depends on intraflagellar transport (IFT) within primary cilia. The Hh receptor Patched is found in cilia in the absence of Hh and is replaced by the signal transducer Smoothened within an hour of Hh stimulation. By generating antibodies capable of detecting endogenous pathway transcription factors Gli2 and Gli3, we monitored their kinetics of accumulation in cilia upon Hh stimulation.
View Article and Find Full Text PDFAntibodies directed against B cells are in use for the treatment of non-Hodgkin's lymphoma and autoimmune disorders. The B-cell-restricted surface antigen CD79b, a signaling component of the B-cell receptor, has been shown as a promising antibody target in mouse efficacy models of systemic lupus erythematosus. Anti-CD79b antibody-drug conjugates (ADC), cytotoxic drugs linked through specialized chemical linkers to antibodies, are effective in mouse xenograft models of non-Hodgkin's lymphoma.
View Article and Find Full Text PDFTargeting cytotoxic drugs to cancer cells using antibody-drug conjugates (ADCs), particularly those with stable linkers between the drug and the antibody, could be an effective cancer treatment with low toxicity. However, for stable-linker ADCs to be effective, they must be internalized and degraded, limiting potential targets to surface antigens that are trafficked to lysosomes. CD79a and CD79b comprise the hetrodimeric signaling component of the B-cell receptor, and are attractive targets for the use of ADCs because they are B-cell-specific, expressed in non-Hodgkin lymphomas (NHL), and are trafficked to a lysosomal-like compartment as part of antigen presentation.
View Article and Find Full Text PDFHaploinsufficiency of Dll4, a vascular-specific Notch ligand, has shown that it is essential for embryonic vascular development and arteriogenesis. Mechanistically, it is unclear how the Dll4-mediated Notch pathway contributes to complex vascular processes that demand meticulous coordination of multiple signalling pathways. Here we show that Dll4-mediated Notch signalling has a unique role in regulating endothelial cell proliferation and differentiation.
View Article and Find Full Text PDFA new family of Ig domain receptors referred to as the immune receptor translocation-associated (IRTA) proteins, FcR homologs (FcRHs) or FcR-like that are expressed in lymphoid cells has been recently described. RNA expression analysis suggests that FcRH1-5/IRTA1-5 are expressed exclusively in subsets of the B-cell compartment. We generated mAbs to FcRH1-5/IRTA1-5 and examined their protein expression pattern in normal tissue and in chronic lymphocytic leukemia (CLL) cells.
View Article and Find Full Text PDFVascular endothelial growth factor-A (VEGF) is an important regulator of vascular permeability. In preclinical studies, VEGF induces endothelial fenestrations in pre-existing and neo-vasculature, while inhibition of VEGF leads to a reduction in endothelial fenestrations. Recently, vascular regression in response to VEGF inhibition has been shown to correlate with the presence of endothelial fenestrations.
View Article and Find Full Text PDFWe conducted an expression analysis of prostate stem cell antigen (PSCA)in normal urogenital tissues, benign prostatic hyperplasia (n = 21), prostatic intraepithelial neoplasia (n = 33), and primary (n = 137) and metastatic (n = 42) prostate adenocarcinoma, using isotopic in situ hybridization on tissue microarrays. In normal prostate, we observe PSCA expression in the terminally differentiated, secretory epithelium; strong expression was also seen in normal urothelium. Forty-eight percent of primary and 64% of metastatic prostatic adenocarcinomas expressed PSCA RNA.
View Article and Find Full Text PDFHere we report the cloning of a novel type I cytokine receptor, gp130-like monocyte receptor (GLM-R), with homology to the interleukin-6 receptor signal transducing chain, gp130, and granulocyte colony-stimulating factor receptor. Human and murine GLM-R cDNAs encode open reading frames of 732 and 716 amino acids, respectively, and the corresponding genes are located in close proximity to gp130 genes on human chromosome 5 and mouse chromosome 13. GLM-R is specifically expressed on CD14-positive cells and is up-regulated more than 50-fold upon activation of those cells.
View Article and Find Full Text PDF