Publications by authors named "Jo M Holt"

"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site.

View Article and Find Full Text PDF

The complete binding cascade of human hemoglobin consists of a series of partially ligated intermediates. The individual intermediate binding constants cannot be distinguished in O(2) binding curves, however, each constant can be determined from the O(2)-induced change in assembly constant for the α(2)β(2) tetramer from its constituent αβ dimers. The characterization of these O(2) binding constants has shown the Hb cascade to be asymmetric in nature, with binding dependent upon the specific distribution of O(2) among the four hemesites.

View Article and Find Full Text PDF

The Hill coefficient nH is a dimensionless parameter that has long been used as a measure of the extent of cooperativity. Originally derived from the oxygen-binding curve of human hemoglobin (Hb) by A. V.

View Article and Find Full Text PDF

Stepwise cooperative free energies and intermediate Hill coefficients are used to assess the presence of noncooperative sequences in the database of binding free energies previously obtained for the eight partially ligated intermediates of human hemoglobin, encompassing a variety of hemesite analog substitutions. This analysis is prompted by the observed noncooperative binding of two ligands to hemoglobins that are partially substituted with Zn2+-heme, an analog of deoxy Fe2+-heme (Holt et al. (2005) Biochemistry 44, XXXXX).

View Article and Find Full Text PDF

The complete binding cascade of human hemoglobin consists of eight partially ligated intermediates and 16 binding constants. Each intermediate binding constant can be evaluated via dimer-tetramer assembly when ligand configurations within the tetramer are fixed through the use of hemesite analogs. The Zn/Fe analog, in which the nonbinding Zn2+ heme substitutes for deoxy Fe2+ heme, also permits direct measurement of O2 binding to the remaining Fe2+ hemesites within the symmetrically ligated Hb tetramers.

View Article and Find Full Text PDF

Ligand photodissociation experiments are used to measure the prephotolysis equilibria between doubly liganded R and T quaternary conformers of the symmetric Fe-Co HbCO hybrids, (alpha(FeCO)beta(Co))(2) and (alpha(Co)beta(FeCO))(2). The free energies obtained from these data are used to calculate the cooperative free energies of the (alpha(FeCO)beta(Fe))(2) and (alpha(Fe)beta(FeCO))(2) intermediate CO-ligation states of normal hemoglobin in the T conformation, quantities important to the evaluation of current models of cooperativity. The symmetry rule model, incorporating sequential cooperativity of T-state ligand binding within an alphabeta dimer in addition to the traditional two-state cooperativity of the tetramer, predicts a larger free energy penalty for disturbing both dimers in a doubly liganded T tetramer than would be expected in the two-state model as currently formulated.

View Article and Find Full Text PDF

A novel model linking the thermodynamics and kinetics of hemoglobin's allosteric (R --> T) and ligand binding reactions is applied to photolysis data for human HbCO. To describe hemoglobin's kinetics at the microscopic level of structural transitions and ligand-binding events for individual [ij]-ligation microstates ((ij)R --> (ij)T, (ij)R + CO --> ((i)(+1))(k)R, and (ij)T + CO --> ((i)(+1))(k)T), the model calculates activation energies, (ij)DeltaG(++), from previously measured cooperative free energies of the equilibrium microstates (Huang, Y., and Ackers, G.

View Article and Find Full Text PDF

The mechanism of cooperativity in the human hemoglobin tetramer (a dimer of alpha beta dimers) has historically been modeled as a simple two-state system in which a low-affinity structural form (T) switches, on ligation, to a high-affinity form (R), yielding a net loss of hydrogen bonds and salt bridges in the dimer-dimer interface. Modifications that weaken these cross-dimer contacts destabilize the quaternary T tetramer, leading to decreased cooperativity and enhanced ligand affinity, as demonstrated in many studies on symmetric double modifications, i.e.

View Article and Find Full Text PDF