Besides its thermogenic capacity, brown adipose tissue (BAT) performs important secretory functions that regulate metabolism. However, the BAT microenvironment and factors involved in BAT homeostasis and adaptation to cold remain poorly characterized. We therefore aimed to study brown adipocyte-derived secreted factors that may be involved in adipocyte function and/or may orchestrate intercellular communications.
View Article and Find Full Text PDFHuntington disease (HD) is a fatal neurodegenerative movement disorder caused by an expanded CAG repeat in the huntingtin gene (HTT). The mutant huntingtin protein is ubiquitously expressed, but only certain brain regions are affected. The hypothalamus has emerged as an important area of pathology with selective loss of neurons expressing the neuropeptides orexin (hypocretin), oxytocin and vasopressin in human postmortem HD tissue.
View Article and Find Full Text PDFRFamide-related peptide-3 (RFRP-3) and neuropeptide FF (NPFF) target two different receptor subtypes called neuropeptide FF1 (NPFF1R) and neuropeptide FF2 (NPFF2R) that modulate several functions. However, the study of their respective role is severely limited by the absence of selective blockers. We describe here the design of a highly selective NPFF1R antagonist called RF3286, which potently blocks RFRP-3-induced hyperalgesia in mice and luteinizing hormone release in hamsters.
View Article and Find Full Text PDFAnnu Rev Physiol
February 2021
Since the discovery of functionally competent, energy-consuming brown adipose tissue (BAT) in adult humans, much effort has been devoted to exploring this tissue as a means for increasing energy expenditure to counteract obesity. However, despite promising effects on metabolic rate and insulin sensitivity, no convincing evidence for weight-loss effects of cold-activated human BAT exists to date. Indeed, increasing energy expenditure would naturally induce compensatory feedback mechanisms to defend body weight.
View Article and Find Full Text PDFIn females, reproductive activity relies on proper integration of daily and environmental changes as well as cyclic sex-steroid feedback. This study sought to investigate the role of the hypothalamic Arg-Phe amide-related peptide (RFRP)-3 in the daily and seasonal control of reproductive activity in female Syrian hamsters by analyzing the RFRP system and investigating the effects of central administration of RFRP-3 at different reproductive stages. In long day-adapted sexually active female hamsters, the number of c-Fos-activated RFRP immunoreactive neurons was reduced in the afternoon of diestrus and proestrus; the latter was correlated with increased kisspeptin activity and the luteinizing hormone (LH) surge.
View Article and Find Full Text PDFMol Cell Endocrinol
December 2016
In female mammals, reproduction shows ovarian and daily rhythms ensuring that the timing of the greatest fertility coincides with maximal activity and arousal. The ovarian cycle, which lasts from a few days to a few weeks, depends on the rhythm of follicle maturation and ovarian hormone production, whereas the daily cycle depends on a network of circadian clocks of which the main one is located in the suprachiasmatic nuclei (SCN). In the last ten years, major progress has been made in the understanding of the neuronal mechanisms governing mammalian reproduction with the finding that two hypothalamic Arg-Phe-amide peptides, kisspeptin (Kp) and RFRP, regulate GnRH neurons.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2016
Seasonal control of reproduction is critical for the perpetuation of species living in temperate zones that display major changes in climatic environment and availability of food resources. In mammals, seasonal cues are mainly provided by the annual change in the 24-h light/dark ratio (i.e.
View Article and Find Full Text PDFRF-(Arg-Phe) related peptides (RFRP-1 and -3) are considered to play a role in the seasonal regulation of reproduction; however, the effect of the peptides depends on species and gender. This study aimed at comparing the RFRP system in male and female Syrian hamsters over long and short photoperiods to investigate the neuroanatomical basis of these differential effects. The neuroanatomical distribution of RFRP neurons and fibers, revealed using an antiserum recognizing RFRP-1 and -3, as well as GPR147 mRNA, are similar in male and female Syrian hamsters.
View Article and Find Full Text PDF