Publications by authors named "Jo Ellen Brunner"

Despite the ubiquity of prerequisites in undergraduate science, technology, engineering, and mathematics curricula, there has been minimal effort to assess their value in a data-driven manner. Using both quantitative and qualitative data, we examined the impact of prerequisites in the context of a microbiology lecture and lab course pairing. Through interviews and an online survey, students highlighted a number of positive attributes of prerequisites, including their role in knowledge acquisition, along with negative impacts, such as perhaps needlessly increasing time to degree and adding to the cost of education.

View Article and Find Full Text PDF

The hnRNP C heterotetramer [(C1(3))C2] binds RNA polymerase II transcripts in the nucleus, along with other proteins of the core hnRNP complex, and plays an important role in mRNA biogenesis and transport. Infection of HeLa cells with poliovirus causes hnRNP C to re-localize from the nucleus, where it is normally retained during interphase, to the cytoplasm. We have proposed that in the cytoplasm, the protein isoforms of hnRNP C participate in the recognition of viral specific RNAs by the poliovirus replication proteins and/or in the assembly of membrane-bound RNA replication complexes.

View Article and Find Full Text PDF

The poliovirus 3' noncoding region (3' NCR) is necessary for efficient virus replication. A poliovirus mutant, PVDelta3'NCR, with a deletion of the entire 3' NCR, yielded a virus that was capable of synthesizing viral RNA, albeit with a replication defect caused by deficient positive-strand RNA synthesis compared to wild-type virus. We detected multiple ribonucleoprotein (RNP) complexes in extracts from poliovirus-infected HeLa cells formed with a probe corresponding to the 5' end of poliovirus negative-strand RNA (the complement of the genomic 3' NCR), and the levels of these RNP complexes increased during the course of viral infection.

View Article and Find Full Text PDF

We had previously demonstrated that a cellular protein specifically interacts with the 3' end of poliovirus negative-strand RNA. We now report the identity of this protein as heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2. Formation of an RNP complex with poliovirus RNA was severely impaired by substitution of a lysine, highly conserved among vertebrates, with glutamine in the RNA recognition motif (RRM) of recombinant hnRNP C1, suggesting that the binding is mediated by the RRM in the protein.

View Article and Find Full Text PDF

We have previously described the RNA replication properties of poliovirus transcripts harboring chimeric RNA polymerase sequences representing suballelic exchanges between poliovirus type 1 (PV1) and coxsackievirus B3 (CVB3) utilizing an in vitro translation and RNA replication assay (C. Cornell, R. Perera, J.

View Article and Find Full Text PDF

The viral RNA-dependent RNA polymerase (3D(pol)) is highly conserved between the closely related enteroviruses poliovirus type 1 (PV1) and coxsackievirus B3 (CVB3). In this study, we generated PV1/CVB3 chimeric polymerase sequences in the context of full-length poliovirus transcripts to determine the role of different subdomains within the RNA-dependent RNA polymerase of PV1 that are required for functions critical for RNA replication in vitro and in cell culture. The substitution of CVB3 sequences in the carboxy-terminal portion (thumb subdomain) of the polymerase resulted in transcripts incapable of RNA replication.

View Article and Find Full Text PDF